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the development of a constitutive model for powder metals. A model for

. powlier metals subjected to an external hydrostatic pressure has been

developed and compares well with experimental results. The exact form of
the theory for a multi-axial! stress state was determined by a series of
mechanical tests. The constitutive model has been incorporated into the
MARC* nonlinear finite element computer program and analysis of an
independent experiment using the modified code has been performed and
verified the accuracy of the theory. Once the theory had been verified it
was applied to the HIP of a disk and a sensitivity study was performed to
determine an efficient modeling strategy. The results of the program are

discussed in detail. -
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Analytical Modeling of the
Hot Isostatic Pressing Process

SUMMARY

A program to develop a finite element methodology for predicting the final
shape of components manufactured by the Hot Isostatic Pressing (HIP) process has
been conducted for the Air Force Office of Scientific Research. The major task
in the program was the development of a constitutive model for compacting metal
powders. The constitutive model extends classical plasticity and creep theories
to include the large decrease in volume resulting from the HIP process. The con-
stitutive model was added to the MARC* finite element code and parameters required
by the model were determined experimentally. The modified code was used to predict
the results of a verification experiment and then applied to the prediction of the
final shape of hot isostatic pressed components.

During the course of the program, several significant results were obtained.
Plasticity and creep theories have been extended to include volumetric plastic
deformations in order to satisfy the requirements applicable to the HIP process.
The MARC code was modified to include the constitutive theory developed. Partially
dense specimens were fabricated for the mechanical tests and analytical expressions
relating final density to pressure, temperature and time for a HIP cycle are in
good agreement with the experimental results. Mechanical test results indicated
there was little volume change during compression testing, and the tension yield
stress was significantly less than the compression yield stress. From the mechani-
cal tests analytical expressions were developed relating the tension and compres-
sion yield stress to density and temperature. Analytical expressions were also
developed describing the deviatoric, or volume preserving, creep strain components.
An independent verification experiment was performed and the results of the experi-
ment compared favorably with the numerical predictions using the modified finite
element code. A parametric study using the modified code indicated the following
effects should be included in modeling the HIP process: (1) all large strain effects
except the unsymmetric stiffness term, (2) temperature gradients, and (3) deviatoric
creep. Weight loadings should be included in long unsupported components and
volumetric creep should be included in low external pressure, long time HIP of
components. The effects of work hardening and the unsymmetric stiffness terms do
not need to be included. At the point where the disk HIP analyses were terminated
the comparison with the measured experimental results was good. The analysis was
able to capture all of the characteristics of the disk HIP.

MARC Analysis Research Corporation
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RESULTS

The feasibility of modeling the shape of hot isostatic pressed components
has been demonstrated as a result of this program. However, during the course of ]
the program, several other significant results were obtained:

(1) A constitutive theory which includes the large volume reductions,
approximately 30 percent, that result from the HIP process, has been developed. E
The theory extends classical, volume preserving, plasticity and creep theories, T
to include large volumetric deformationmns.

(2) The MARC code was modified to include the p-sticity and creep theories
developed in Task 1. The MARC code was selected for use in the program based on
the results of the assessment of several finite element codes. Simple analytical
tests verified the modifications.

(3) Analytical expressions have been developed to predict the powder density
as a function of pressure, temperature and time and are in good agreement with
the experimental results from partially dense test specimens fabricated
from MERL 76.

(4) Compression test results indicated that there was little or no volume
change occurring during compression testing. Tension testing resulted in very
low values for the tension yield stress. This may be due to the presence of
voids and the incomplete bonding at the metal powder particle interfaces. -
Additional testing indicated there was little or no contamination present that
would produce low tension yeild stresses. Simple analytical expressions were
developed for the tension and compression yield stresses and agreed well with the
experimental results.

(5) An independent verification experiment was designed and analyzed using
the modified code. The experimental and analytical results were in agreement.

(6) A parametric study was performed to determine the relative importance
of various modeling parameters in the HIP of components. An actual disk HIP was
modeled and the results compared well with observations resulting from the HIP,
The numerical model predicted a difference in the axial and radial contractions
which was within 8 percent of the experimentally measured value.
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INTRODUCTION

The technology for fabrication of nickel base superalloy turbine engine
components by powder metallurgy (PM) methods has advanced rapidly during the past
five (5) years. The strong emphasis on PM is the result of advanced engine
technology requirements for higher performance alloys which are more difficult
to process (cast, forge) and hence, result in higher costs. Advanced PM technology
for the production of near net shapes in superalloys offers the two-fold advantage
of producing complex engine components from the most advanced alloys withcut the
need for either castability or workability in the alloy and doing so at significantly
lower cost than current technology. An Air Force Materials Laboratory's program,
described in Ref. 1,has demonstrated the viability of the Hot Isostatic Pressing
(HIP) process for the production of a complex turbine disk-shaft to near net shape
at significant cost reduction when compared with the current method of production.
For nickel-base turbine disks, with integral bolt flanges, over 60 percent of the
final component cost is incurred in metal removal operations. Further, nearly
20 percent of the part cost is involved in procurement of raw materiai, as little
as 10 percent of which ends up in the finished machined part. Thus, by improving
the buy-to-fly ratio from 10 to 1 to 5 to 1, it is possible to save nearly 40
percent on component fabrication costs,

o xSRI e A0 im0 e - N o2l ot it

A substantial economic advantage for powder metallurgy materials can be

1 achieved by direct hot isostatic pressing of components to near finished dimensions,
! The HIP of components to near finished dimensions would minimize the cost of ma-
chining, and save critical materials, The concept of HIP complex near-net shapes
is simple. As is shown schematically in Figs. 1 and 2, a mold having the required
configuration is filled with powder The mold or container, is outgassed, sealed,
placed in a HIP facility, raised to a temperature of over 2000 F and subjected to
an external gas pressure of approximately 15,000 psi.

During the HIP process the volume occupied by the powder decreases
by 30 to 35 percent. The rate of powder compaction occurs as a result of surface ‘
tension forces and plastic deformation and is a function of temperature and pres- ;
sure. Jdeally this shrinkage is isotropic, so that the final shape is a uniformly
reduced replica of the initial container shape. In practice, the final shape can
depart substantially from that ideal shape depending upon the techniques practiced.
Because of this distortion and a current absence of systematically derived analytical
tools to predict it, the full benefit of the HIP process has not been realized.
Rather, HIP containers are fabricated larger than necessary to accommodate this dis-
tortion.

ey

e -

Many factors contribute to HIP distortion. Some arise from imperfect execution
of steps in the HIP process such as nonuniform filling of the container, thin spots
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in container material and incomplete outgassing of the container. The present
discussion assumes a perfect fabrication process and is concerned with distortions
intrinsic to the HIP process.

To determine the load transferred from the HIP container to the powder a
constitutive model of the powder is required. This model should include irrevers-
ible compression and shear strength growth as functions of pressure, temperature
and time. Volume reductions of 30 percent to 35 percent imply changes in linear
dimensions of the container in excess of 10 percent. This in turn implies that the
powder and container both experience large strains and displacements. Present
research is based on an empirical approach and does not fully address these issues.
To adequately model the HIP process a large-strain finite element analysis code
possessing experimentally verified constitutive models for the container and the
powder is needed.

The objective of this program was to develop a finite element methodology
for predicting final size and shape of hot isostatically pressed axisymmetric
powder metal structures. A constitutive model for the compaction of metal powders
during the HIP process has been constructed and an experimental program was
executed to provide data for and testing of this model. An existing nonlinear
finite element code which models both container and powder deformations during the
HIP operation has also been modified. This code was verified by comparing its
predictions with the results obtained from a specially designed HIP experiment.
Constitutive theory development for the container was modeled using standard elastic-
plastic and creep theories. The material properties for the container material
were developed under separate funding, and are described in Ref. 2. More specific-
ally, the program consisted of the following five tasks:

(1) Constitutive Model Development - The development of a finite strain
elastic-plastic-creep model of metal powders compacting under the
action of high temperature and pressure. The plasticity and creep
theories are used to predict irreversible volume shrinkage for the
powder.

(2) Code Modifications - The modification of an existing finite element
code to incorporate the developed constitutive model.

(3) Material Property Determination - Metal powder filled glass containers
have been subjected to HIP and powder densification determined as a
function of pressure, temperature and time. Test specimens were
fabricated from the samples and mechanical tests have been performed
to determine the stress-strain behavior of partial dense HIP powders.

A 1Ty P e 3G TR T A7, G K ey R
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(4) Verification Study ~ A partial HIP experiment has been designed and
executed. The experiment was simulated using the modified code and
the results compared well with those of the experiments.

(5) HIP Process Sensitivities Studies - A disk previously subjected to
HIP was selected and the associated HIP process was simulated using
the modified code. 1In addition, the sensitivity of the predicted
shrinkage to the analysis procedure has been determined and an efficient
analysis methodology defined.

The following section discusses in detail the program plan. Each of the
above five tasks are then discussed in the next five sections.

T

T
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PROGRAM PLAN

The objective of this program was to develop a finite element methodology
for predicting the final size and shape of hot isostatically pressed axisymmetric
powder metal structures. There are five main tasks, each of which is discussed
in detail below.

Task 1: Constitutive Model Development

In this task a constitutive model which characterizes densification and
deformation of metal powders during the HIP process was developed through the
execution of the following subtasks.

Task 1.1 Yield Surface Determination

A yield surface for compacting metal powders must be developed. Existing yield
surface functions were compared on the basis of their ability to model experi-
mental data. A closed smooth yield surface which is quadratic in stress was
selected. More general forms of the yield surface functions were not considered
necessary since limited experimental data was developed and employed in the
evaluation of candidate yield surfaces. The yield surface

2
-+
2 Il o 2

3 2 o

B

was chosen. This yield surface admits unequal yielding in tension and compression

through the use of the variable o. The parameters in the yield surface were eval-

uated by fitting the function to results obtained from both the partial HIP experi-
ments and the mechanical tests.

In the above equation, a, B and o, are functions of void volume fraction,
plastic work, temperature and time.

Task 1.2.1 Deformation dependent hardening

Hardening was characterized by powder void volume fraction and plastic
work performed. Hardening parameters were characterized as a function of HIP
pressure and temperature by measuring the volume reduction of partial HIP test
specimens. A large strain, finite element, elastic-plastic analysis of a micro-
structural model was performed to assess the usefulness of finite element
idealizations of such microstructural compaction process models. Pressure versus
volume shrinkage curves were obtained from the finite element analyses and com-
pared with partial HIP experiments, Yielding of a partially compacted powder in
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hydrostatic compression was assumed to follow experimentally derived pressure
versus densification curves. The influence of volume shrinkage on yield stress
in compression was determined from the mechanical tests.

Task 1.2.2 Time dependent hardening

The time dependent hardening of the yield surface was determined from the
mechanical testing of specimens fabricated from partially densified HIP powder.

For example, if G is a specimen yjeld strength in uniaxial tension, then for the
yield surface assumed in Task 1.1

o, = o /(1 + BT/3)(1+a/5)

The time dependence of o, was determined from the mechanical tests of specimens
fabricated from partial HIP samples,

A HIP process large strain elastic-plastic flow theory was developed to
relate increments of stress and strain. An associated flow rule based on the yield
surface developed in Tasks 1.1 and 1.2 was used. The flow rule relates the
Jaumann rate of Cauchy stress to the symmetric part of the velocity gradient.

A constitutive theory encompassing creep effects was developed and employed

to evaluate the hypothesis that the dominant EIT process deformation mechanism
is plastic flow.

Creep deformation was separated into volumetric and deviatoric components

and laws for the components developed. The volumetric creep was assumed to
follow a power law model fo the form

C_ _,.m
Dy = -Ap

where Dkkc is volumetric creep shrinkage rate, p is HIP pressure, ancd A, and m
are the usual temperature dependent, power law parameters. The results of the
partial HIP tests were used to assign numerical values to A and m. Although

the HIP tests are not carried out at uniform temperature and pressure, volumetric
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creep shrinkage rate can be computed from the results of fabricating partially
dense HIP specimens subjected to the same maximum temperature and pressure for
different lengths of times.

The deviatoric creep strains were modeled using a law of the form

o>

p¢ =32
ij 2

ij

at

where the terms are defined in the section on Time Dependent Deformation. To
develop material properties for this creep model a uniaxial law of the form

= _k
Dc = Bo tm

was assumed. The temperature dependent constants can be evaluated from uniaxial
creep data.

Task 2: Code Modifications

f—ny ey e ——— ey e,

finite element code. An upgraded level H-4 of the MARC nonlinear finite element

code was employed. This level provides large strain finite element elastic-

plastic and creep analysis capability using an updated Lagrangian formulationm.
Capabilities of the code which were used in this program are (1) large strain, l
updated Lagrangian formulation, (2) elastic-plastic and creep constitutive theories,

(3) nonlinear boundary conditions, and (4) axisymmetric solid and shell elements. g
The axisymmetric solid elements are used to model the powder and the shell elements are t
used to :iodel the container. The MARC code is constructed such that the constitutive
theory is independent of element formulations. Thus, the element library in MARC

does not require modification. The updated Lagrangian formulation provides the i
framework for computing all terms in the incremental stiffness matrices. Thus,

the only portions of MARC that must be modified are:

The HIP process constitutive theory must be incorporated into an existing {

(1) The yield function

(2) The incremental stress-strain calculations

(3) The pseudo force load vector for creep analyses
(4) The incremental strain calculations f
(5) The plasticity hardening rules

(6) The routines which print stresses and strains.

The code modifications were verified by the analysis of simple one element
test problems.
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Task 3: Material Property Determination

The constitutive parameters must be evaluated through a series of HIP
experiments and mechanical tests. Specifically the shape and expansion of the
powder yield surface and the creep law parameters were determined as functions
of HIP pressure, temperature and time. The experimental program consisted of two
subtasks. 1In the first subtask samples of metal powder were subjected to partial
HIP cycles. In the second subtask mechanical tests were performed on specimens
fabricated from partially dense HIP powder samples. The experimental program
used only one type and initial density of metal powder: that corresponding to the
powder used in the HIP disk modeled in Task 5.

A matrix of partial HIP experiments was executed to determine plastic and
creep volumetric strains as functions of HIP pressure, temperature and time.
The experimental samples were cylindrical powder filled glass containers.
Several HIP cycles were considered and the resulting powder densification measured.

Task 3.2 Mechanical Tests_

Mechanical tests were conducted to determine the plasticity parameters
idetnfieid in Task 1. Partially dense HIP samples were removed from the furnace
and machined into specimens. Two types of tests were performed:

(1) Compression tests were performed at the HIP temperature to identify one
point on the yield surface and to examine plastic, hardening elastic,

and relaxation response.

(2) Tension tests were performed at HIP temperature to determine the
symmetry of the yield surface.

Task 4: Constitutive Theory Verification

The constitutive model developed in Task 1 must be experimentally validated.
Tests were designed and conducted to investigate regions of the theory not ex-
plored by the mechanical tests performed in Task 3. This investigation was
accomplished by designing and considering two candidate tests. These
candidate tests included spherical and cylindrical inclusions in a powder metal.
One of the candidate tests was modeled numerically using the modified code of
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Task 2. The results of the numerical modeling were examined to determine the .

most appropriate candidate test or tests. Several specimens were manufactured and

tested. Only glass containers were used since they have negligible strength at HIP
temperatures. The results of the tests were compared to the numerical results.

Task 5: HIP Process Sensitivity Study

A study must be conducted to assess the sensitivity of the HIP process consti-~
tutive and numerical models to parameter values and numerical techniques. A HIP
geometry was selected for which documented initial and final dimensions exist, and
an analysis performed. Finite element analysis of a simple geometry was performed
to assess the affects of the following:

(1) Inclusion of powder creep deformations

(2) The assumption that rotations and deviatoric strains in the powder are
small relative to volumetric strains

(3) Temperature gradients in the powder

(4) Pressure, temperature and time increment sizes and increment convergence
criteria

(5) The influence of various parameters.

Two finite element breakups of the disk were generated. The first breakup was
relatively simple but sufficient to model overall container and powder response.
Local deformations caused by container corners and container-powder interactions
cannot be included in this model. Only variable (2) of the previous list are
strongly dependent on container and powder interactions. The effects of the re-
maining variables were investigated independently using the simple finite element
model and recommendations for the efficient modeling of the HIP process were made.

The second finite element breakup was more detailed and was used to investigate
interactions between the powder and the container. The contributions of large
rotations and shear strains to final predicted shape of the HIP container were in-

vestigated.
In Table 1 each of the tasks and subtasks are summarized.

The following sections describe in detail the results for each of the Tasks
1 through 5.

10
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CONSTITUTIVE THEOR. DEVELOPMENT

Hot isostatic pressing (HIP) of metal powders is a complex process wherein
the loose aggregate of metal powder particles is compacted into a coherent mass
by the application of temperature and pressure. To achieve a specific shape a
glass or metal container resembling the shape of the component to be manufactured
is fabricated and filled with metal powder. The filled container is first vibrated
to increase powder bulk density and is then evacuated and sealed. After heating
in a preheat oven at approximately 2000 F, the container is transferred to a
HIP furnace and is subjected to a pressure-temperature cycle. For nickel base
superalloys temperature and pressure typically range up to 2200 F and 15,000
psi, respectively.

The HIP process performs two functions: (1) densification of the loose
powder metal aggregate and (2) endowment of the densified powder with mechanical
strength. The process by which this occurs can be described microstructurally
as passing through the several stages (Refs. 3, 4, and 5):

(1) Particle rearrangement, fragmentation and plastic flow
(2) Formation of isolated pores

(3) Sphericalization of the isolated pores

(4) Closure of the spherical pores

nriving forces for these stages are the applied external HIP pressure and
particle surface free energy of which the former is typically much larger. Although
the mechanisms which are active du-ing these stages of the process are not fully
understood, it is generally accepted that the principle mechanisms are

(1) Plastic deformation

(2) Volume diffusion or Nabarro-Herring creep
(3) Grain boundary diffusion or Coble creep
(4) Power law or dislocation creep.

Recently Ashby (Ref. 6) developed the concept of deformation mechanism maps
as a tool for delineating (1) regions in stress-temperature space where one or
more of these mechanisms dominates and (2) regions where more than one mechanism
is active. These maps have been applied by several authors (Refs. 3, 4, and 7) to
the HIP process in an attempt to identify active mechanisms. The geometric model
on which these studies are based is a hollow spherical shell of inner and outer
radius R; and R,, respectively. The inner radius, Ry, is that of a typical isolated
spherical pore and R, is such that the density of the metal shell material averaged
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over the shell and pore equals the macroscopically measured demnsity of the partially
densified powder. Wilkinson and Ashby (Ref. 3) using Torre's model (Ref. 8) and
Green (Ref. 9) have considered the shrinkage of perfectly plastic hollow spheres
subject to an external pressure as a means of gauging the effect of plastic
deformation on densification. If p and o, are the applied external pressure

and the at temperature yield strength of the powder, then the residual void

fraction after plastic deformation will be equal to

v = exp(-3P/20 165

y)

=1 - oy/psolid @

oy is the density of the aggregate after plastic densification, and pgqa1iq is the
density of the fully compacted powder. At high temperatures (e.g., 2000 deg F)
and 15,000 psi,HIP pressure can be up to three times greater than ¢, in which
case v, from Eq. (1) is less than one percent. Although this analysis is
appropriate for only powder aggregates with isolated pores (i.e., powders in the
final state of compaction) it does indicate the possibility that much of the com-
paction process can be characterized using plasticity theory.

Two approaches to modeling powder deformation and strength growth in the HIP
process are possible. The first is based on continuum mechanics principles wherein
microstructural effects are averaged over the powder aggregate. The second approach
is to consider microstructural processes explicitly. Since the objective of this
program is to predict overall powder response in the HIP process, the latter approach
is not sufficient by itself. Rather, it may be used to aid development of con-
tinuum constitutive modeis by supplementing experimental work.

The development of continuum constitutive models requires consideration of
large strain effects since the initial void fraction is approximately 30 percent.
This in turn implies that a 30 percent volume reduction is necessary to obtain
full powder densification. Both time independent and time dependent models must
be considered, though based upon the above equations, time independent plasticity
effects can be expected to dominate, A finite strain plasticity theory requires:
(1) specification of a yield surface to delineate regions of elastic and plastic
response, (2) a hardening rule for the expansion of this yield surface and (?) a
flow rule for relating stress and strain increments. This flow rule must be form-
ulated using large strain, stress and strain rate measures. Time effects require
the specification of a creep law.
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Yield Surface Considerations

In this section yield surface concepts pertinent to powder metals are discussed.
Since, a priori, powder metals might be thought similar to soil 1like materials,
soil mechanics yield surface theory is reviewed and the shortcomings identified.
Next the requirements for compacting powder metal yield surfaces are discussed
and previously published yield surfaces are reviewed. Last, the yield surface
forms to be used are presented, and discussed in detail.

The metal powder is initially packed as a cohesionless granular material.
The HIP container is evacuated, brought to a moderately high temperature
and maintained at this temperature. Although some sintering by surface diffusion
may occur at this point, the rates will generally be low, due to the initially small
contact area between particles. Since the material is granular with no fluid
phase, it is reasonable to expect that the Mohr-Coulomb type yield surfaces from
soil and rock mechanics might be relevant to the incipient deformation. Figure 3
shows a cross section of the linear Mohr-Coulomb yield surface for a cohesionless
material.

The yield surface is defined by the yield function

£(og5) = 8Ty + 0y - 0,//37= 0 (3

where I, is the first stress invariant or three times the mean Cauchy stress
oxk/3 and 0, is the yield stress. Also

J,=1/28_. S, (4) i
< 1j 1) 3
is the second invariant of the deviatoric stress Sij defined by
S;. =o0,, -1 /3 (%)

13 = %35 ~ T1 %4y

61 being the usual Kronecker delta symbol. Note that when 8 is zero Eq. (3)
reduces to the usual yield surface definition of metal plasticity

3, = o 23 (6)
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In Eq. (3), it is assumed that the material is isotropic and flows at a Mises )
equivalent shear stress which is linearly dependent on mean stress. The linearity
of this dependence is not a necessary feature of such pressure sensitive yield
conditions, but is rather a mathematical convenience generally consistent with
observations. More general relations, such as the parabolic Mohr-Coulomb model,

[0}
+ g -2 -6 /7=
L, ¥Em L -0, /Y3=0 7

can also be considered. For Mohr-Coulomb materials, admissible stress states

are those on or within the region to the left of the yield surface curve (see Fig. 3).
Within this region, the frictional forces between particles are sufficient to
suppress large macroscopic deformations due to particle rearrangement; further, the
macroscopic response is taken to be linear elastic. Of course, the elastic

moduli governing deformation within this region are not those of the material
matrix, but are suitably reduced due to the presence of interparticle void space.

At some fixed mean stress, as Jj is increased to its yield value, the
frictional forces can no longer prevent particles from sliding over each other.
Permanent macroscopic shape changes then occur as particles ride over one another
and establish new contacts with adjacent particles. For soil like materials it
is experimentally observed that this new configuration is not as densely packed
as the initial state, and some volume increase is observed. This particle rearrange-
ment occurs rapidly enough that the deformation can be idealized as instantaneous
plasticity. An important feature of plastic deformation accommodated by frictional
processes is illustrated schematically in Fig, 3. That is, the plastic strain
vector, EP in Fig, 3, is generally nonassociative: it is not expressible as the
gradient with respect to stress, N in Fig. 3, of the yield function. A consequence
of such non-normal flow rules is that the incremental stress-strain matrix is non-
symmetric as shown in Appendix A of Ref. 10.

In summary, the effect of standard Mohr-Coulomb type yield surface is to (1)
close the yield surface in principal stress space along the positive hydrostatic
direction and (2) to predict volumetric plastic expansion as shown in Appendix B
of Ref. 10. While this is clearly a proper material limitation to impose for soils,
it is a limitation which is not encountered during the HIP process. This is because
material points experience a monotonic increase in hydrostatic pressure, corre- f
sponding to leftward movement along the I; axis in Fig. 3, followed by a period i
of constant pressure, and then depressurization. For such a load history, Mohr-~
Coulomb theory predicts no inelastic volume change. But, in fact, inelastic
behavior is macroscopically observed as pressure is increased, A new mechanism
of plastic deformation takes place due to dislocation motion within the particles.
That dislocation motion should occur within the particles is not surprising,
since the micro-stress distribution within particles is highly nonuniform due to
uneven traction distributions at interparticle contacts.

e e e
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Once particles begin to deform due to contact loading, it can be expected that
many additional deformation mechanisms may be operative as well. For example,
some particles may break free of the restraining frictional forces and reorient
themselves, but when averaged over volumes containing many particles, the macroscopic
deformation corresponding to a macroscopic hydrostatic pressure would be a uniform
volumetric decrease. Indeed, any deviatoric deformation arising from a spherically
symmetric stress state would be in conflict with the presumed macroscopic isotropy
of the metal powder.

Thus, to use a Mohr-Coulomb type theory to model the HIP process, the yield
surface must be modified to admit (1) yield in compression and (2) permanent
volumetric shrinkage. This can be achieved by closing the yield surface along the
negative hydrostatic axis as in Fig. 4. Such an approach has been adopted by Suh
(Ref. 11) starting from a linear Mohr-Coulomb yield condition.

Another approach is to postulate the definition of a yield surface based on
heuristic arguments. Since powder particle orientation is random, the powder
aggregate should initially respond isotropically. Thus the yield function must
also be an isotropic function and depend on only the stress through its invariants.
Also, yielding must occur under hydrostatic pressure and that the yield function
must approach that of a metal as densification progresses. Since invariant Iy
is a linear multiple of the hydrostatic component of stress, and yield surfaces
for metals are usually defined in terms of invariant J,, a convenient form for
the yield surface is

f=£(I, Jp, h) = 0 ®

Further, since all first and second order invariants of stress are exprescsible
in terms of I;, and J and the third invariants of o4 and s,., have no physical
interpretation, Eq. (B) appears quite general. The pgrameter h, depend on the
deformations, and represent, for example, a, B and o, in Eq. (3).

The yield surface in stress space should also be initially closed and then
tend to an open ended cylinder about the hydrostatic axis as the powder compacts
and sinters. Yielding in hydrostatic compression is clearly needed to model the
HIP process. Further yielding in hydrostatic tension is also to be expected
since a partial HIP specimen resembles a metal with voids and, as shown by
Needleman (Ref. 12), hydrostatic yield dependence permits macroscopic modeling
of void growth and coalescence.

-2 il i it it A 2020
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Assume that a HIP powder metal has unequal responses in temsion and
compression, and that the yield surface has no sharp corners, A simple yield
function satisfying the above assumptions is

2 1140 2
8 (——3— +3,=0"/3 (9)
A yield function of the form of Eq. (9) has previously been proposed by Green in
Ref. 9, Shima and Ovane in Ref. 13, and Kuhn and Downey in Ref. 14. Equation (9)
is an ellipse in I, /Jz space (Fig. 5), with deformation dependent parameters, o,
g and 0,- The yield surface is plotted in principal stress space with o5 zero

in Fig. 6, for the case a = 0.

Note that as B approaches zero, the Mises yield condition is recovered. In
Fig. 3, yield surface Eq. (9) has been plotted with the linear and parabolic Mohr-
Coulomb yield surfaces for the case of B equal to one, and o equal to zero. It
should be noted that Eq. (9) predicts a closed yield surface which is smooth where
it intersects the hydrostatic axis. Also assuming small strains and an associated
flow rule, Eq. (9) implies that, unlike Mohr-Coulomb theories, pure shear stress in-
duces no plastic volumetric change, as shown in Appendix C of Ref. 10.

A large strain theory of plasticity based on Eq. (9) can be developed by
decomposing the symmetric part of the velocity gradient temsor, Dij into elastic
and plastic parts, or

1 fovy v | e P
Dy -7(a§~+?%)-nﬁ +Dij (10)
The plastic deformation rate ng is assumed to be given by an associated flow rule
. of
Dij = 2 (11)
aoij

where ) is a scalar function greater than zero.

Equations (8) and (11) can be used to solve for the scalar A. Assume that the
parameters h, depend on the deformation measures Nys ©OT

ha = h, (na)

then
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5= '“’13- af/acij]/[ks(af/ahu)(aha/BnB)] (13) .

where the nB have been chosen so that

J.) (14)

and

() =3( )/ (15)

A complete discussion of the yield surface considerations for a symmetric yield
surface appears in Appendix D of Ref. 10. The choise of the parameters n, is des-
cribed in the following section.

Choice of Hardening Parameters

In this section, strain hardening of a compacting metal powder is discussed
and parameters to characterize hardening are identified. This is necessary
to complete the specification of the plastic deformation. Initially, the yield
surface of the powder aggregate will be small. During the ccmpaction and sintering
process yield strength will grow and the yield surface will expand. Compaction
alone will cause growth of the yield surface along only the I; axis (Fig. 5) with
a theoretical limit corresponding to full densification. Yield stress in shear
will be less affected by compaction. Additionally, yield strength will grow
in all directions of stress space with increased sintering time  Thus, there
exists a time dependent hardening phenomenon unique to powder metallurgy. Since
plastic deformations are assumed to occur instantaneously, time enters the plasticity
theory as a parameter defining yield surface size at the time of plastic deformation.

The process of strain-hardening in triaxial pressure will primarily be a
geometric effect on the microscopic scale. There could also be a contribution to
the apparent macroscopic hardening due to real strain hardening of the particles
as they experience large plastic shearing deformations, Such an effect could raise
the effective yield strength ¢ of the metal particles. The separate contributions
of matrix hardening and void reduction can be determined from systematic experi-
ments using different initial volume fractions.

17




R80-944374-13

Initially, powder particles contact each other at isolated points. As pressure
is applied, the contact areas and the powder stiffness increase. The macroscopic
result is strain hardening of the powder due to macroscopic shrinkage. 1In the limit
the powder is completely compacted and the response to further pressure increments
is elastic dilation; the plastic bulk modulus has become infinite.

An obvious choice for a deformation measure, ny, is the void volume fraction
defined in Eq. ( 2). The void volume fraction is a measure of the macroscopic
shrinkage and should reflect an increase in stiffness due to an increase in con-
tact area between the individual particles, or

no=v (16a)

The void volume fraction does not represent any permanent changes that occur
during plastic deformation. If as in classical plasticity theory the effective
plastic strain is used this would not represent all of the permanent deformations
since permanent volume changes would not be represented. A third deformation
measure, the plastic volume change would then be required.

Rather than use the permanent volume change and the effective plastic strain
as two independent deformation measures, a single measure, the plastic work,
would be sufficient to represent both effects. Therefore, let

< uyP = rt P
n, =W .!)' Oy4 Dijdt (16b)

In classical volume preserving plasticity theory using either the plastic work
or the effective plastic strain produces exactly the same result. The plastic
work, or equivalently the inelastic energy dissipation has been used previously
to describe nonlinear material response, for example, in Refs., 15 and 16.

The quantities k , Eq. (14) can now be determined from n, as

r 2 2 17a)

k1 v 3 (1-v) B (Il+a) (17a

and
2

k. =—g¢ (17v)
3

as shown in Appendix A.

Parks, Ref. 17, has pointed out an interesting connection between the plastic

work, the void volume fraction, and the effective plastic strain in the solid

material. Note that the rate of work done macroscopically on the entire specimen
must equal the rate of work done on the solid powder particles, or

s Sl ekl il i i
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P ' s??lid p,solid
./;w av = [ P13 dii  dVg, g (18)

solid

= -1 ..
where dij Dij /3 Dkk O35

Equation (1R) can be equivalently written as

~P

E:solid (19)

5 -
W= (1-v) O501id
where

9olid is the equivalent tensile stress in the solid material, and

Egolid is the equivalent tensile strain in the solid material.
If the stress-strain relationship for the solid material (i.e., asolid vs.

Ezolid) is known then the plastic work can be determined as a function of

void volume fraction and equivalent plastic strainin the solid material.

It is now possible to describe the symmetric part of the velocity gradient
tensor, D{} in terms of the stress rate, for small strains, using Hooke's Law for
the elastic response and Eq. (11) for the plastic response in the form

. = e.p D = e.p .
%5 T Mgk ke T Ligkl Sk (20)

where for small strains

Dkl = Ekg (21)

In general the yield function is of the form

f( h)=20 (22)

o]

ij, a
where elastic deformations occur when f < 0 and plastic deformations occur
when f = 0 and where h, are parameters in the yield surface dependent on
deformation history measures Ngs OT
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Assume that the plastic deformations are given by an associated flow rule
S 2 (23) -
j i3 |
Using Hooke's law for the elastic deformations o
o= b (1) 5 (24) :
157 7F V%5 7 Vkidyy 9

the total strain rate can be written

. _ =@ « D
€55 = €5y + €3 (25)

Equations (20) through (25) can be solved to give

of af
B0,. oo
e.p E ii  “k1
1jkl] 1+ ik "j1 o fF 1 "
Bmn Fpp E
of of o af sf
i aomm 3dij . aonn 8oy 1 (26)
j k
T e (), Poee ot fin )u
E
N aomn 3°mn J chn acmn E
e
E
r §f 8f
1-2v + v Somm donn
£ E
Af _ af [ v},
| aomn Somn E
g where
3 H=23 3f (27)
E 3hy 3ng B
* and . )
j = 28
g Aks (28)
3
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The following yield functions were under consideration to describe the yield
surface of a powder metal: 9

Il 2 o
1. f(o...h ) = B ——) I - = (29)
ij7 a 3 2 3

where

_ P
h1 o (v,W)

hy, = B(v, WP)

' _ o2 (I3t _c 2
11. o, Bo) = (33——) to oo (30)
3

W

where hy UO(V,WP)

B(V,Wp)

=2
"

a(v,WP)

=2
w
fl

III. 1 e
3 (31)

- P

where hl oo(v,w )
- P

h2 Bl(v,w )

h,6 = Bz(v,Wp)
3
and v is the void volume fraction
WP is the plastic work

The yield function of Eq. (29) exhibits identical yield stresses in tension
and compression and, after application of the associated flow rule, will produce
a volume change under compressive loading. Experimental evidence described in
the section on Material Property Determinaticn indicates (1) the yield stress
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is significantly smaller in tension than in compression, and (2) there is little
change in volume during uniaxial compression. Therefore Eq. (29) is not a suitable
representation. The yield function of Eq. (31) can be adjusted to produce different
yield stresses in tension and compression but would exhibit a volume change in uni-
axial compression. Equation (30) can be ajusted to produce different yield stresses
in tension than compression and can be adjusted to produce zero volume change in
uniaxial compression. Therefore, Eq. (30) will be used to describe the yield surface
of powder metals.

Applying Eq. (30) to Eqs. (26, 27, and 28),

o 2,2 i +a
3o, . 3
1]

3 ) S5 % iy (32)

where Sij = deviatoric stress tensor

1
of _ 2 1 +a
e = 28 (—3 ) (33)
mm
20
aof f 0
h, 3 3 (34)
1 o
I 2
of of l+a
Sh. - 3g —28( 3 ) (35)
2
5f 3 2 2 (11 +a
. "3 ° _:T‘) (36)
3
2 I1 + a
k1 = 2(1-v) B (———3——) (37

and

1
K =§ 02—0.82<'L1'L) (38)
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The quantities 5;— are hardening parameters which are determined from the mechaniecal

test results and gescribed in the section on Material Property Determination.

Large Strain ¥low Rule fonsiderations

The macroscopic deformations during HIP can be large with volume reductions
approaching 30 percent. Consequently, a rigorous finite deformation formulation
of the process is required. It should be noted that a finite deformation analysis
need be employedonly if amaterialpoint undergoes a large volume change or if a
material line element undergoes a large orientation change. In the present case,
it may be expected that only the former effect is sufficiently large to mandate
the finite deformation analysis. However, the possibility of large rotations will
be included in the following discussion. A

Two approaches to problems involving finite deformation are: (1) refer all
continuum variables to a fixed initial reference configuration, or (2) continuously
update the reference configuration to the current (most recent) configuration.

The finite element implementation of these methods for large plastic deformation

has been discussed by Hibbitt, Marcal and Rice (Ref. 18) and McMeeking and Rice
(Ref. 19). The updated Lagrangian formulation of McMeeking and Rice, though fully
equivalent to that of Hibbitt et al., is superior. The formulation of McMeeking and
Rice is computationally simpler, there are fewer terms in the stiffness matrix
computation and the yield condition is simpler to express.

Following McMeeking and Rice, note that, with the current deformed state
as the reference configuration, all stress measures coincide:oi. =54: = T4j = tij
where the stresses are, respectively, Cauchy (true), second Pioia—Kirchhoff,
Kirchhoff, and first Piola-Kirchhoff stress measures, However, the rates asso-
ciated with these stress measures do not coincide. A stress rate which is useful
for expressing large deformation constitutive laws is the Jaumann, or co-rotational
rate (Ref. 20). The Jaumann rate of Cauchy stress is

v .
o] =0

1 (39)

-0 Q +Q, ©
i3 ip pj ip 'pj
where G'j is the material time rate of Cauchy stress oij and
i
1
Qij =5 (8vi/axj - avjlaxi)

The constitutive law of interest is of the form
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v
%3 T L gy P (40)

where L denotes the rate moduli, Dij is the symmetric part of the velocity
gradient tensor.

Lijkl is developed in Ref. 21 for large strains as

e-p 1
L. . = -
ijk1 Lijll > 6iloj1 + Gj oil + Gilcjk + 6j1°ik + cijdll

(41)

and Li;ﬁl is the small strain elastic-plastic stiffness in Eq. (20). The
tensor Lijkl is not symmetric due to the presence of the last term, or

Ligka ? M1

For a hydrostatic pressure

=P3,

dij 14 (42)

the tensor is symmetric and since this should be the primary part of the loading
during the HIP process, the last term should produce a nearly symmetric stiffness.
It, therefore, was decided to separate the last term into symmetric and
unsymmetric parts, and add the symmetric part to the stiffness matrix and transfer
the unsymmetric part of the loading side of the governing equations,

Time Dependent Deformation
In the HIP process two time effects are present: the strength growth of
the metal powder as bonds between contacting particles grow and time dependent

deformation as voids shrink. Powder strength growth was modeled as the time
dependent expansion of the plastic yield surface.

In the small strain theory of metals it is assumed that the total strain €43
can be represented as

24
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e,,=¢c,, +e,. +e¢e,. (43)

where ee., eg and Ei’ are the elastic, plastic and creep parts of the strain,
respectiVely, The elastic strain is time independent and recoverable, the plastic
strain is time independent and irrecoverable, and the creep strain is time
dependent and irrecoverable. Typically, creep deformations in metals are
significant when absolute temperatures are greater than one half of metal

melting point. Also, creep deformations are volume preserving. Creep laws

for constant uniaxial stress are usually expressed as

= £(9 t, T) (44)

where €€ = de€/dt is the rate of uniaxial creep strain and o, t and T are uniaxial
stress, time and temperature, respectively. An example of Eq. (28) is the
Norton - Bailey power law (Ref. 22):

.c m oy
¢ = A(T)o t (45)

If the creep rate is steady the creep strains can be written as
oC n
e = B(T)o (46)

where A, B. K, m and n are determined by fitting the function to experimental
creep strain data. Experimental data is usually in the form of creep strain as
a function of time for a fixed stress and temperature,

To obtain creep strain rates for multiaxial stress states it is customary to
generalize uniaxial creep laws in a manner analogous to the derivation of the
Prandtl-Reuss equations of classical plasticity (Ref. 22) giving

oC ¢

€ij = 7

Qyj mfe

Sij (47)

where
(48)

2 ij ij
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are the equivalent creep strain rate and equivalent stress, respectively, and
are assumed related according to

¢ = f(o, t, T) (49)

In the HIP process temperatures are between 80 and 90 percent of the powder
metal melting point, Therefore, creep deformation is possible as voids in the
compacting powder shrink. However, it is difficult to observe such creep in a
HIP test because of the time necessary to pressurize and depressurize the HIP
facility. Standard HIP practice utilizes a monotonic increase in pressure and
temperature over aperiod which may be as long as an hour, followed by a two or
three hour hold at pressure and temperature. In the partial HIP experiments
specimens differing only by the time they are maintained at temperature and
pressure were fabricated. Time dependent volumetric shrinkage can be com-
puted by comparing the amount of densification. Thus a volumetric creep strain
law can be experimentally derived. A possible expression for this law is

Do Ap™ 50)
Kk P (

while for a steady creep

C
Dkk BP

n

which is analogous to Eq. (45). Here Dﬁk is the trace of the creep component
of the velocity gradient Dij’ P is the HIP pressure and t, time.

To derive a creep law for the deviatoric component ng of the creep strain
velocity gradient a law of the form

~

C
Dij

A 3£/3S, (51)
ij

is postulated where, parallel to the small strain theory, f is the yield function
for the compacting metal powder. If the classical Mises yield function is used,
Eq. (51) reduces to

a

C

Dij =A Sij
This may be rewritten as
C
c 3D
P15 77 5 Si (52)
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where analogous to Eq. (47) . 1

e V2 e fe - /38,58, . (53) 1
‘ D= = D . = = ij
3 Dij ij o 2 ij ij

To complete this creep law a relationship of the form of Eq. (46) is chosen

D¢ = Bo" (54)

where steady state creep is assumed. The constants B and n are temperature

and void volume fraction dependent. They can be determined directly from relaxa-
tion tests of partially dense specimens, and are fully described in the section on
Material Property Determination.

The dominant creep mechanism can be determined by examining creep deforma-
tion maps presented by Ashby in Ref. 6. The map for nickel is the most appro- 1
priate map since nickel based superalloys are being modeled. The creep deforma-
tion map, from Ref. 6, for nickel is reproduced in Fig. 8 with experimental points
outlining the partial HIP experiments with MERL 76. The major creep mechanism
for HIP operating conditions appears to be dislocation creep if it is assumed
that the pressure is approximately equal to the tensile stress  Steady state
dislocation creep is generally described by Eq. (46) with the temperature depen-
dent function represented by an activation energy. Equation (46) can be rewritten

as
N
-T
1 2 (@
: e T ) 55
i ecreep t, % (55)
1
where creep is the uniaxial creep rate,

L ]
€
¢ 1s the uniaxial stress

T 1is the absolute temperature
c

t

o ¢an be assigned an arbitrary value i
o’ To and N are material constants

From Wilkinson and Ashby, Ref. 23, the relative density is given by

N
P -
O

[1-(1-0)1/N] |
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where p = 1-v is the relative density, and k is 3 for final densification and 2 for
intermediate densification. The relative density after plastic deformation, Pos is
used as the initial condition in Eq. (56) and is calculated using the equations
(61) and (62). The constants t,, T, and N are det-.rmined from partial HIP experi-
ments.

Microstructural Modeling to Develop Macroscopic Constitutive Laws

In general, experimental difficulties associated with instrumentation and
facility capabilities preclude experimental determination of all material properties
needed in the constitutive theory. For example, it will not be possible to probe
the entire yield surface of a partially dense HIP powder. Thus, analytical and
numerical microstructural models of the HIP process are needed to augment the under-
standing of the constitutive theory. This section reviews previous analysis of
metal microstructural effects and discusses additional analyses performed to further
define the constitutive theory.

Voids in plastically deforming metals have been modeled by several authors.
Gurson (Ref. 24) has developed approximate yield surfaces for materials with micro-
scopic voids. The principal interest in Gurson's studies was in assessing ductile
fracture of polycrystalline materials containing voids or impurities which nucleate
holes that microscopically grow and coalesce into a macroscopic fracture event.

For porous metals, Green (Ref. 9) has assumed a yield function of the form of Eq. (9)
with o equal to zero, and has evaluated the dependence of 8 and o, on void volume
ratio by modeling an isolated spherical void in a metal matrix under external
hydrostatic pressure. Finite element elastic-plastic modeling of the growth of
voids contained within unit cells of homogeneous material has been performed by
Needleman (Ref. 12). Mullins, et al. (Ref. 25), have performed a small stain,
finite element, elastic-plastic, hardening analysis of a spherical pore under remote
hydrostatic pressure and have obtained results similar to Green for void shrinkage
as a function of pressure. The previous analyses considered isolated voids.

Time dependent microstructural effects have been less extensively modeled.
Many authors (Refs. 3-7, 26 and 27) have postulated the presence of microstructural
creep mechanisms in both HIP and pressureless sintering but no definitive conclu-
sions on the importance of these mechanisms have been reached. The most systematic
approach to understanding microstructural mechanisms has been the deformation maps
of Ashby (Ref. 6) discussed earlier. However, Ashby's work was directed toward
determining when different mechanisms are active rather than quantifying the effect
of these mechanisms on powder densification. Finite element modeling of void
growth caused by steady-state creep deformation has been modeled by Burke (Ref. 28).
In Burke's analysis steady-state creep was assumed, the geometry was a uniformly
spaced distribution of spherical voids corresponding to a void fraction of 5 percent,
and the loading was remote uniaxial tension.
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The above plastic and creep analyses were concerned only with imbedded voids,
but during the HIP process the initial response of the powder metal, when it is
the weakest, contributes significantly to final deformations. Models based on
imbedded voids will be accurate in the final stages of densification but do not
correctly represent the initial stages of densification. During the initial
stages models based on the contact between spherical particles should be more
accurate.

Finite element modeling of regular arrays of spherical particles, illustrated
in Fig. 9, was performed to determine the macroscopic response during the initial
stages of compaction. The finite element modeling is fully described in Ref. 29,
and resulted in the conclusion that the initial stages of compaction can be simply
modeled as isolated equal size spheres in contact. When the effects of the spheres
containing a common central sphere began to interact, the numerical simulations
became unstable and the analyses were terminated.

The finite element predictions were compared with results from elastic and
plastic theories of contact (Refs. 30-33). Vhen substantial plasticity is present,
the pressure distribution over the contact surface is approximately uniform and is
given by

P =Co 57
y (57)

where oy is the yield stress of the powder particle, and
c%2.75 (58)

Equation (57) was used to describe the initial stages of plastic densification
and from Ref. 29 resulted in the following relationship

(P/cy) =C [(o/oi)2/3 -1]/tan2 9 (59)

where p = 1l-v is the relative demnsity,

cos 6 =Pi + '(E})( 1+ Oi)
4 2 8 , and (60)

pi is the initial relative density.

Equation (59) compares well with the finite element results as illustrated
in Fig. 10. The initial slope of Eq. (59) appears to accurately describe the
initial stages of densification while the finite element results appear to approach
the final densification model of Eq. (1). These two relationships can be connected
by taking
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which satisfies the condition

and has the same initial slope as Eq. (59) if S

=Cvy

a -1

(1-v4) tan?0 (62)

T b

Equation (61) is also plotted in Fig. 10 and shows excellent agreement with the
finite element modeling.

ey

The plastic work and current void volume fraction are being used as param-
eters for the mechanical response of partially densified powder metals. The
plastic work, void volume fraction path during a HIP cycle, where the powder
metal is subjected to a pure hydrostatic pressure, can be found from

P p

W =o0,D . (64)
ij ij
where wP is the plastic work
943 is the Cauchy Stress
D =1/2 (v, . + V
TR R L ,
vy ; is the velocity gradient, and ;
() =4a()/dt
% For a hydrostatic pressure
04§ = —Pﬁij (65)
and
. P P
= ~PDyp (66)
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From Appendix A, Eq. (A.23)

P A ‘.7
. D —_
kk ¥ 1y

where v is the void volume fraction
Then Eq. (66) becomes

SP_ By 67)
1-v
or Vf
wp____f P (v)dv (68)
1-v
Vi

which is the plastic work performed between void volume fractions v; and
Vs where

v, 1is the initial void volume fraction, and

ve is the final void volume fraction.

Equation (61) can now be substituted into Eq. (68) to find the plastic work
as !

D
w2 1-vf
. 3 [f(l-vf) f(l—vi)] + ngln (l—vi) (69)
1- 2 2 ' -
b + _Eé [ln( Vf) - (vi-vf) - é (vi - vf ) + 2& 1n(l_zi)-(v,—v )
| Vi Vi Vi 1-vy/ 1 E
where
n, = a-lnvi
M1 =a+ 2 lnvy
Ny = -lnvi
; > xK
A f(x)=z:x_.
k=1 k

The function f(x) is presented in Table 2.




R80-944374-13

In general the effects of plasticity and creep will be separated in order to-
describe the material properties. A yield function of the form of Eq. (9) was
preferred. Two deformation measures, the void volume fraction and the
plastic ‘work, were used to represent the dependence of the parameters in the
yield function. Under these assumptions the small strain elastic-plastic stress-
strain law is given by Egqs. (20), (22) and (26). The effects of large strains,
using the Cauchy stress, are included in Eq. (41). A nonsymmetric stiffness matrix
results and the nonsymmetric terms are transferred to the loading side of
the equilibrium equations. The etfects of creep have been divided into two parts,
the volumetric and deviatoric. Power law creep models have been assumed.

Based on the finite element models of compacting spheres expressions, Eq. (61),
relating void volume fraction, or relative density, and pressure, for a powder metal
subjected to pure hydrostatic compression have been derived. 1In addition, the

plastic work done while the powder metal is subjected to a pure hydrostatic pressure
has also been derived.
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CODE MODIFICATIONS

General Considerations

A numerical simulation of the constitutive model is required to
utilize the model in the analysis and prediction of HIP processes. The numerical
simulation is also employed in both the formulation and evaluation of the
constitutive model. .

There are several available finite element codes that have the large strain
capability required to model the HIP process. For example, the MARC finite ele-
ment code (Ref. 34), can be applied to a wide variety of nonlinear solid mechanics
problems. However, none of the available codes presently contains a constitutive
theory that would adequately model the HIP process.

The necessity for modeling large strains arises from the 30 percent volume
reduction typically experienced during the HIP process. A finite strain elastic-
plastic constitutive model of the HIP process was formulated in terms of the
Jaumann rate of Cauchy stress 043 and the symmetric part of the velocity gradient,
D;:. Additionally, the simplicity of an updated Lagrangian finite element formu-
lation of the constitutive modeled is preferred. Level H-4 of the MARC nonlinear
finite element code uses the McMeeking and Rice (Ref. 19) form of this finite
element formulation and permits use of constitutive models of the form Eq. (20).
This code was modified to permit the modeling of the HIP process.

In order to numerically evaluate the response of the material each of the
response types was separated. One common approach in small strain deformations
(see Ref. 34) is to divide the strain rate into its elastic, plastic, creep and
thermal parts. The total strian rate could then be expressed as:
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. _ .el _ ,pl ., cr , :th
Eij —Eij . . +€,_ (70)

where éij is the total strain rate,

el
€.,
ij
- eP’
1]

eSr
ij
eeh
ij

is the elastic strain rate,
is the plastic strain rate,

is the creep (or time dependent) strain rate, and

is the thermal strain rate.

In Fig. 11 the elastic and plastic strain components are presented for a
uniaxial stress-strain case. UlNote that in Fig. 11 a second strain rate
decomposition can be considered in place of Eq.(70). For the second
possibility, considering just the elastic and plastic components of the
strain rate, Eq. (70) would become

. _ .ely; ,elpl
eij Eij + Eij

ay

A small strain numerical iterative procedure based on Eq. (71) for the
evaluation of the elastic-plastic response will be presented in the next section.
A parallel development based on analogous additive decomposition of the
stretching tensor is straightforward.

The finite element code should contain the appropriate element types
to describe the deformation of the powder metal during HIP. In the MARC i
H.4 large strain version, all of the solid elements can be used in an updated
Lagrangian formulation, including three, four and eight node isoparametric axi- £
symmetric ring elements. 3

The following sections will consider in more detail: (1) iteration
schemes for the solution of the resulting nonlinear system of equations and
(2) the changes to the constitutive portion of the MARC code.

OIS

Plastic Iteraction Procedure

Consider the case of a small strain elastic-plastic response of a typical
structure., Sufficiently large applied loads will result in permanent or
plastic deformation. A procedure for calculating the response of the
structure undergoing plastic deformation is required. A method analogous
to that presented in Ref. 32 will be discussed.

i el
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To evaluate the response of the structure, the loading history may be
divided into a number of incrementally applied loading steps. Each of these
load increments can then be applied sequentially to the structure. An
iterative scheme is then required to calculate the response of the structure
to each individual load increment.

At the beginning of a new load increment it may be assumed that the
strain will change in a manner analogous to the previous increment. As an
initial estimate all of the strain change is then assumed to be elastic. The
change in the stresses can then be calculated using Hooke's Law or

€ e
Bojs = Lijkl k1 (72)

where Aoij is the incremental stress vector
Aekl is the incremental total strain vector, and
e
Lijkl is the matrix of elastic constants.

If the resulting total stress is within the yield surface, the matrix of
material constants, Lijkl is simply given by

e
. = L
Liskt = Mg (73)
If the resulting total stress is outside the yield surface weighted material
constants and stiffness matrices will have to be calculated. It should be
noted at this point that if a load increment is exceedingly large and if

there is a sudden change in the type of loading, care must be taken in order -
to iterate to the correct solution.

If the resulting total stress is outside the yield surface, the fraction of
the stress increment that remains elastic must bc determined. This corresponds
to Aci}l in Fig. 11. 1If the yield surface in stress space is considered to be
given by

f(oij) = 0,
then the appropriate m in

f(ol"l 4 mas. ) =0 (74)
ij ij

may be determined where oi-l is the stress tensor from the previous increment.

The mean material matrix i% calculated from
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e e-p
= + (1-
Lijkr = ™ygiq © O™l (75)
where L:;il is the tensor relating G, , and € in Eq. (0).

ij kl

Once the tensor Li'kl has been determined, standard finite element solutions
can be applied to find the incremental changes in the displacements, strains
and loads. For example, if the strains are given by

Bet = B} lou (76)

where {Aul is the vector of incremental nodal displacements, and [B is the
matrix relating the vector of element strains {Ae} to the nodal displacements,
the stiffness matrix can be found from

x1=f1e1" (01187 av. an
v

The incremental nodal displacements and strains can be evaluated by solving
for AMu in

[K]{Au) = (AP} +iP-T1 (78)
and then applying Eq. (76).
The term AP 1in Eq. (77) is the applied incremental load. The term
[P-I] is cefined as the residual load correction and is added to Fq. (77)

to insure the total external loads, {P}, and the total internal reactions,
(I], remain balanced over all the load increments. The relation

Pl - {1} = fo} (79)

where

I =[lBTllol av (80)

continues to hold throughout the loading history.

One iteration cycle is completed each time the stiffness matrix is
formed and the resulting equations solved. At the end of each cycle the
resulting solution must be tested for convergence. This is accomplished, by
considering the ratio
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N - N-1
r = &"3___NAE__ (81)
AE

where AEN-lNis the change in energy summed over all elements on the previous
cycle and E° is the change for the present cycle.

An accurate solution will usually result if r is maintained less than 0.1
for elastic~plastic problems.

If the solution has satisfied the convergence,the stresses and strains
can be updated and a new load increment added. 1If the solution has not
converged then a new guess for the strains, based on the latest cycle, must
be input and the calculation procedure repeated. When the solution has
not converged after a given number of cycles, the program should exit from
the load incrementing loop.

Figure 12 is a flow chart illustrating the small strain elastic-plastic
iteration procedure.

For finite strain plasticity the stiffness matrix has the additional
terms presented in Eq. (41).

Time Effects Iteration Procedure

The metal particles will creep to fill the void space when subjected to high
temperature and pressure. The reduction of void space will depend on the time
that the powder is subjected to the high temperature, high pressure conditions.
The creep strain rate will depend in general on the stress, the accumulated creep
strain, the temperature and time. To illustrate the incrementing procedure assume
that the creep strain rate is normal to the Mises yield surface in stress space,
then the creep strain rate is given by Eq. (47).

For a specific time increment the incremental creep strain will be

er _ -cr (82)
Aeij Eij At.

The incremental displacements are

IK]IAu! = |AP} + IP-II + [APHM (83)
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where

{AP*| = f[B,T [cl {ae av- (84)

is the pseudo-creep load and {8e®) is the vector of element creep strain. The
strain increment can be calculated from Eq. (76) and the strains, creep strains,
stresses and displacements can be updated.

A convergence test on the stresses should be performed. If the algorithm
has not converged a shorter time step should be used and the calculations
repeated. If the criterion has been satisfied then the time step can be increased.
Figure 13 is a flow chart illustrating the small strain creep iteration procedure.

Code Selection, Installation, and Testing

In addition to the MARC computer code, selected for use in the program,
several other codes were examined. Table 3 lists .ach of the codes considered.
The code selected should be able to simulate the response of the powder metal and
the container. The response will be assumed to be axisymmetric and therefore axi-
symmetric continuum and axisymmetric shell elements should be included in the
element library. Four of the eight computer programs listed do not contain axi-
symmetric shell elements and are therefore unsuitable. These four codes are:
HONDO, FIPAX, PLANS, and NON-NISA. The HONDO code contains a very general con-
stitutive routine that could be utilized for the non-volume preserving plasticity
theory. However, HONDO does dynamic problems only and would not be a cost effec~
tive approach. Both the ANSYS and ADINA codes do not have the capability to per-
form large strian calculations and would require extensive modifications. The
NEPSAP code can perform large strain calculations but uses a total Lagrangian
formulation. For reasons states previously, an updated Lagrangian formulation is
preferred.

The MARC H.4 large strain code was obtained and installed. The initial test
case modeled a rigid plastic hardening tensile specimen subjected to a uniaxial
stress state. The MARC code successfully simulated the large strain response
of the tensile specimen. Figure 14 shows that at displacements as high a 70 per-
cent of the original specimen length the code results were nearly identical
to the theoretical values.

s i
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Code Modifications

To analyze the powder plastic flow the plasticity theory described previously
must be incorporated in the MARC code. The MARC code applies the algorithm of Rice
and Tracey, in Ref. 35, in the subroutine THRUS. Therefore, one approach would be
to modify THRUS to include nonvolume preserving plasticity. The MARC program also
contains user subroutines which the general user writes to incorporate special
features of his analytical model. One of these user subroutines, HYPELA, can be
used for hypoelastic material properties (i.e., nonlinear elastic material proper-
ties). Subroutine HYPELA has for input the initial strain increment, and the stress
state from the previous increment. The increment number can be brought in through
a COMMON block. A third approach using the user subroutines appropriate to a
specialized form of viscoplasticity can also be used.

Incorporating the nonvolume preserving plasticity theory into the MARC code
through the user subroutine HYPELA requires writing only the one subroutine while
modifications to THRUS would also require modifications to several connected sub-
routines. Therefore, the first step was to try HYPELA using the problem illustrated
in Fig. 14 as a test case. The test was successful with the predictions being
identical to the results presented in Fig. 14.

The nonvolume plastic flow equations were incorporated as modifications to
the MARC code through the user subroutine HYPELA., A flow chart of the modifications
is shown in Fig. 15. The first attempts at integrating the plastic flow equations
were modifications of the algorithm developed by Rice and Tracey (Ref. 35). These
attempts were only partially successful and a direct integration using Runge-Kutta
was employed. Adapting a method described by Parks (Ref. 36), the Runge-Kutta
integration strain increments are a fraction of the total strain step, where the
fraction is specified by the user. If the final stress state drifts more than a user
specified distance from the yield surface, the strain increments are reduced in size
an amount again specified by the user. If the strain increments decrease below
a user specified fraction of the total strain step, a correction to the final stress
state is made by bringing the stress back to the yield surface along the normal
to the yield surface, and the appropriate modification is made to the elastic-
plastic moduli.

The MARC code modifications were run independent of the MARC code for several
simple test cases, two of which are illustrated in Figs. 16 through 18. They show
excellent agreement with the theoretical solution using approximately one percent
total strain steps in the integration algorithm. In Figs. 16 and 17, the material
response when subjected to a uniform pressure is illustrated. Figure 16 presents
the pressure as a function of the density and shows only minor variations between
the numerical and theoretical response. The void volume fraction as a function of
strain compares exactly as illustrated in Fig. 17. The stress state did vary from
hydrostatic but the error in the second invariant of the deviatoric stress tensor,
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Jy, was always less 0.3 x 10-4 of the square of the initial particle yield stress.
0, in Eq. (61). The uniaxial compression test case as illustrated in Fig. 18 was
exactly on the theoretical variation with the void volume fraction remaining con-
stant to four places. Both of the above cases were run with and without correcting
the final stress state with the same results to four significant figures.

The code modifications were then added to the MARC finite element code and
tested on the same two sample cases. The agreement between theoretical and the
numerical code predictions was excellent although somewhat smaller strain steps
were required for numerical stability. The unsymmetric part of the stiffness
moduli were added to the MARC code and effects of creep were included through the
user subroutines CRPLAW and VSWELL. This approach for including creep is not
entirely adequate but the inadequacies can be easily removed in the new version of
MARC released in June 1980.
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MATERIAL PROPERTY DETERMINATION

To predict the mechanical response of metal powder subjected to the HIP
process it is necessary to know the mechanical properties of the metal during the
HIP cycle. These mechanical properties can be obtained by removing test specimens
from the HIP facility at various stages in a HIP cycle. The partial HIP samples
would represent the powder at various stages for a pressure-temperature history.

A complete description of the mechanical properties can then be obtained by
postulating yield surfaces, flow rules, hardening laws and creep properties

and comparing these predictions to the results of mechanical tests on the partial
HIP samples.

Partial HIP Tests

The UTRC HIP facility has been utilized to process powder metals through
temperature-pressure-time profiles closely paralleling the procedure used to
fabricate full size turbine disks to near net shape. Figure 19 shows a represen-
tative temperature-time history detailing the mode of consolidation being used
to fabricate full size disks. Two distinct phases of thermal history should be
noted.

In the first phase (preheat) the metal powder is preheated for 3 hr at
temperatures rising from 1500 F to 2000 F and then held at 2000 F for 8 hr. All
of the preheat cycle is done at 1 atm pressure. During the preheat phase some
sintering occurs and the powder acquires sufficient strength to be handled. In
the second phase, the preheated powder sample is transferred to the HIP unit.
During the first hour, the temperature and pressure are raised to 2135 F and 5000
psi, respectively. During the next 1-1/2 hr the pressure continues to rise to
the full 15,000 psi. The pressure, 15,000 psi, and temperature, 3125 F, are then
maintained for 3 hrs, to complete the densification.

UTRC facilities allow several partial HIP samples to be preheated simul-
taneously. Since the powder is initially weak a container is required to retain
the powder shape for temperatures exceeding 2000 F. Therefore, during the
preheat cycle the powder is encapsulated in quartz. During the preheat the
density changed from 60 to 65 percent of full density initially to 65 to 70 per-
cnet of full density upon completion of the cycle., All specimens were preheated
at 2000 F and 1 atm for 12 hr.

After the completion of the preheat cycle the samples have the quartz con-
tainer removed and a glass container substituted. At HIP temperatures the inside
surface of the glass container fuses with the outer powder metal particles and
forms a gas tight seal about the powder metal. The glass has no strength or
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stiffness. Consequently, a uniform hydrostatic stress is transmitted to the
powder metal. The glass container with the preheated or sintered powder metal is®
next placed in the HIP facility and subjected to a specified temperature, pressure
time cycle.

In Fig. 20, a specimen is shown in different stages of a partial HIP cycle.
The specimen is shown encapsulated in quartz before the preheat cycle. A sintered
or preheated bar is shown in glass before HIP, and a partially densified bar is
shown with the end removed for density measurements.

A 100 1b lot of MERL 76 powder, blend 61578, was obtained and samples were
subjected to sieve and chemical analyses. A comparison of the results of the
blend chemical and sieve analyses with a blend used in other programs showed the
two blends to be essentially identical.

The first three partial HIP experiments attempted to find a pressure at
2135 F, the standard MERL 76 HIP temperature, which induced less than full
powder densification. MERL 76 powder was encapsulated in stainless steel tubes
with 0.75 in. and 0.06 in. external diameter and wall thickness, respectively.
After the filled tubes were outgassed to remove air, their ends were crimped and
welded shut. The tubes were then sintered in a furnace for 12 hr at 2000 F and
allowed to cool to room temperature. Subsequently, each tube was reheated to
1200 F, loaded into the HIP unit which was also at 1200 F, and subjected to a
pressure temperature cycle, The pressure-temperature cycle for specimen 3 is
shown in Fig. 21. Maximum HIP pressures for specimens 1, 2 and 3 were 5000 psi,
2500 psi and 1000 psi, respectively. Specimen 1 was held at peak pressure for
20 min while specimens 2 and 3 experienced peak pressure for only ten minutes.
In all three experiments the powder was completely compacted.

It can be concluded that densification occurs so rapidly at 2135 F that HIP
pressure and time cannot be controlled accurately enough to partially densify
MERL 76, Therefore, present experiments are directed towards partially densifying
powder in the 1600 F to 2000 F temperature range. The results obtained must then
be extrapolated to predict densification rates at 2135 F,

Experiments 4, 5 and 6 investigated the short time response of powder to
pressure. From these tests, it was observed that between 1600 F and 1800 F
little short term densification occurs at 1000 psi. These first six tests
indicated that between 1600 F and 2000 F and between 1000 psi and 15,000 psi
partially densified specimens would result,

The next set of tests was performed at 1800 F and various pressure, with the
maximum temperature and pressure acting for 10 minutes only. These tests were
successful in producing partially dense samples. The test regime was expanded
to include 1600 F, 1900 F and 2000 F at appropriate pressures and again the time
at maximum temperature and pressure was held to 10 min. Finallv, a set of
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experiments at various times was performed to determine the effects of creep.
Table 4 is a listing of each of the partial HIP experiments completed.

Some understanding of the compaction process can be obtained by applying the
full density range plastic compaction model, Eq. (61) in the Section of Microstruct-
ural Modeling. In order to apply the model the yield stress of the powder particle
1 material must be known. This data does not exist and therefore the short time
partial HIP data has to be reduced to determine the yield stress. For each of the
temperatures, 1600 F, 1800 F, and 2000 F, the yield stress was estimated and
Eq. (61) was applied to determine the relative density for various applied pressures.
Figure 22 presents the results of the calculations and demonstrates good agreement
for the yield stresses given by

T

oy =11.1 x 109 ksi]e 120.7 R (84)

Equation 84 results in yield stresses that are somewhat low for superalloys. Three
facts could account for this: (1) the yield stress for the pre-HIP powder metal

is generally lower than for the fully consolidated powder, (2) the strain rate during
a partial HIP cycle is relatively slow and therefore produces a somewhat lower

| effective yield stress, and (3) the creep rates at high temperatures are relatively

: high, producing an apparently lower yield stress.

The effects of creep on the density can be examined by applying Eq. (56), which
was derived by Wilkinson and Ashby in Ref. 23. The relative density after plastic
deformation, Pos is used as the initial condition in Eq. (56) and is calculated
using (61). The relative density before any plastic deformation was taken as

G 6.70

and the condition

was applied at
t = 10 min.,

1 which is the minimum time the partial HIP specimens were maintained at maximum
temperature and pressure.

An analyses of the densities for the partial HIP experiments performed
indicates the constants in Eq. (56) are given by

v 2
% 2 x 10713 min
x 7

t
T 3000 R

N
o
o
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when

o =15 ksi
)

In Fig. 23, the calculated relative density is compared to their experimental
values with fair agreement.

Photomicrographs of two partially dense HIP rods at 1800 F are shown in Fig. 24.
The majority of the particles have remained nearly spherical, while a few particles
appear to be severly deformed.

Mechanical Tests

The major objectives of the mechanical tests are: (1) to determine the yield
surface, (2) to measure the elastic properties of partial HIP metal powders,
(3) to examine hardening flow rules, and (4) to determine the creep properties of 1
the partial HIP samples. After the partially dense HIP material is removed from
the furnace it must be machined into test specimens. The mechanical tests of
these specimens should be performed at the HIP temperature, which is relatively
high. The oxidation rates become excessive because of the large surface area due
to the voids and the high temperature. Therefore, it is necessary to perform the
mechanical tests in an inert environment.

To determine the shape of the yield surface several types of mechanical tests
are required. Each type of test produces one point on the yield surface. There f
is one point on the surface that is known: the hydrostatic pressure of the HIP
process. A compression test performed at temperature will provide a second point
on the yield surface and will also provide some information on the elastic, hardening
and plastic flow of the material. Tension tests performed at temperature, when
compared to a compression test performed at temperature, will determine the symmetry
of the yield surface. 1In addition, creep tension tests at the HIP temperature are
desirable to determine accurately the creep properties of the partially dense
metal powder. 1In Fig. 25, a compression, tension and creep specimen of powder metal
is illustrated. Two partial HIP bars are required to construct all the test speci-
mens illustrated in Fig. 25. The compression tests are the most important tests to
be performed since they produce a hydrostatic pressure which is the predominant
loading feature during a HIP cycle. Two deformation measures will be used to charac-
terize the yield surface; the void volume fraction and the plastic (nonrecoverable)
! work. Therefore, the measurement of the axial length change is not sufficient to
determine the mechanical response and a measurement of the volume will also be re-
] quired. The final volume of a compression specimen can be measured after a com-
pleted test but this does not provide a complete description of the path to the
final state.
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Thirty compression tests were performed. Three of these tests were used to size
the compression specimens and determine the test conditions. The remaining tests
were all completed in a similar manner. Figure 26 illustrates the typical output.

1 The specimens consisted of a right circular cylinder 0.5 in. long by 0.2 in. in

: diameter. Each specimen was placed in a furnace in an inert gas and brought up to
the temperature at which the specimen was hot isostatically pressed. At tempera-
ture the specimen was subjected to compression crosshead displacement rate of
0.0025 in./min and the load was recorded. After the load leveled out, the cross-
heat rate was doubled to 0.005 in./min and after the load again leveled out, the
crosshead displacement was fixed and the load recorded as a function of time.

Measurement of the dimensions of the compression specimens before and after
testing, and a summary of the data is given in Table 5. The average values for the
height, diameter, and volume changes are presented in Table 5 along with the stan-
dard devitions. From the last column in Table 6 it can be seen that over all the
samples there was a significant decrease in the height and a significant increase t
in the diameter, while there was essentially no change in the volume. ‘

A total of 14 tensile tests were completed and resulted in significantly lower i
yield stress values than the compression tests, especially at 2000 F. Table 7 is
a summary of the compressive and tensile yield stress values calculated from the
mechanical tests. The low tensile yield stresses could be a result of the presence
of voids which would be adjacent to the particle interfaces. Tensile stresses,
which are amplified at the void, would tend to separate the particles producing a
smaller apparent yield than compression stresses which would tend to close the voids.
The tensile test results were so low that it was determined to be impractical to
perform the creep tests. Instead, use was made of the relaxation tests, performed
during the compression testing, to determine the creep properties.
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Additionally, three room temperature tensile tests were performed to determine
if the MERL 76 material was contaminated. Table 8 summarizes the results. Note that :
three room temperature values were obtained 144, 102 and 138 ksi, with corresponding :
‘ ultimate stresses of 168, 156 and 164 ksi, respectively. Fully densified MERL 76 !
E generally yields at 145 ksi at room temperature indicating that partially densified z
specimens are representative of the fully densified material. Even though the value i
of 102 ksi is relatively low, it appears that the low yield stress of partially
densified materials at high temperatures cannot be explained by contamination of the

particle surfaces. Contamination would have reduced the strength to values well f

] below the fully densified yield strength for MERL 76. E
|

|

In Table 7, two compression tests demonstrated abnormally high values. Two of
these tests were repeated with essentially the same results. An explanation for
the high values should be found as higher yield stresses are desirable and this
result may be related to the relatively low tensile stresses. Microscopic examina- i
tions did not yield any results that would indicate why these two specimens had
! high yield stresses or why the tensile specimens had low yield stresses.
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Examination of the fracture surfaces of tensile samples using a scanning
electron microscope has indicated that the partially dense specimens are not contam- d
inated. The tensile specimens fractured at room temperature showed no evidence of
oxidation of the particle surfaces and showed no evidence of any foreign material.

The specimens fractured at 1800 F did show evidence of oxidation but this apparently

occurred after the specimen was fractured, since there is no evidence of any oxida-

tion in all room temperature partially dense material. Thus, the most probable ]
explanation for the low yield stress at high temperatures is due to the presence ;
of voids which will amplify the stresses present at the bonded particle interface.
Ceramic inclusions significantly reduce the fatigue strength of hot isostatic
pressed material as the temperature is increased, voids should act in a manner
similar to the ceramic inclusions.

o, S8 v, Sl

neg

The uncertainty associated with the tensile test results necessitated the use
; of the experimental observation that the volume was conserved during compression.
& A comparison of the results of this observation with the results predicted by a
. symmetric yield surface, a equal to zero in Eq. (9), is a test of the sensitivity
of the assumption. Figure 27 displays either the analytical radial to axial strain
rate ratio, or the experimental final ratio of radial strain to axial strain. Al-
though there is scatter, Fig. 27 shows that assuming no volume change under uniaxial ]
compression is a better assumption than assuming a symmetric yield surface.

o

e

Interpretation of Mechanical Test Results

The mechanical tests indicated that there is little or no volume change in
compression. Coupling this fact with the hydrostatic pressure yield stress, P_, and
the compressive yield scress o, will determine all of the yield parameters in Eq. (9)

as
a = O¢ (85)
g2 = 25 (86)
q
Og = O¢ (87
where
g =Py (88)
Oc
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The experimental results for the tensile yield stress, oT, were not
reliable but can be determined from Eq. (9) as

2
-1
op = (q2+1) T (89)
q

Normalizing the compressive yield stress data, Ocs with respect to
the initial powder particle yield stress, Oy shows that this ratio is approx-
imately a linear function of relative density as shown in Fig. 28, or

Jc - b(Vj—v) (90)
Oy

where

is evaluated from Eq. (61) by setting P equal to Py,

is void volume fraction

is initial void volume fraction, and

can be determined by requiring the tensile yield stress to vanish
at the initial void volume fraction, or

o< <

0T=0atv=vi

From Eqs, (88) and (89), the above condition on b is

lim Py 2 (92)
Vi . 3
Then from Eqs. (61) and (90)
b=—C5 (93)
tan<e

where C and 6 are given by Eqs. (58) and (60) respectively.

The temperature, T, and strain rate, ¢, dependence have been included in the
initial particle yield stress, Oy. A good fit occurs when

-T .
oy = oyge To [1+aln(%—)] (94)

0,

for uniaxial stress conditions.
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A good fit to the specimens partially densified in the HIP facility occurs if

¢ 4 0.00315/min.
The parameters in Eq. (94) are

1.074x1010 ksi

QYO

T, = 120.7 deg R

a = 0.03403, and
¢, = 8.148x10%/min

Equations (85) through (94), are the plastic formulation included in the code,

and are compared to the experimental measurements in Figs., 22, 28, and 29. The
agreement is good if the volumetric creep under hydrostatic pressure is included,
(Fig. 22). Volumetric creep will move points subject to HIP for more than 10 min
(the solid symbols in Fig. 22) to the right of the line representing instantaneous
plastic deformation.

All of the hardening quantities, oha 4, Eq. (26), the elastic-plastic moduli,

on
L?EEI can now be determined
9
.. (b )o (95)
Ny v 1-vy y
Eﬁ_ﬁ_3f§03&_pﬁd (96)
3r‘l v qzccz € ov Y on
3 _sa . _ b )oy (97)
] av 1-vy
where
aP
y =£0 —l+—l—_v__ In v + av (9=
ov 3 y [ v vi vy i ;;7

and a is defined in Eq. (62)

e e ————__at = i
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Although little work hardening was observed during the compression tests,
it may have an influence on the final deformations, and therefore an approx-
imate hardening law of the form of Eq. (99) below was assumed.

-a wP
o = b V'-V:-l 1 2 99
c 1. Jy aj e (99)

a, are constant work hardening parameters,

where W 1is the plastic work, a»
and assuming Eq. (99) to hold

a wP
th Is] V=V T2
_— = 0 = 1
£ P b v oy ajae (100)

dh
2 _ 38 33 3hy
— £ = = P
3712 awP (qioc) y anz (101)
ah3 -azw
—2 =90 _ v-v§
N,y w2 b (1‘Vi) Oy ajage (102)

From the uniaxial compression tests it was noted that the compressive yield
stress seems to level off at about 1.4 times the initial compressive yield

stress and therefore the constant a) is given by

a; = 0,286 (103)

The constant a, was found to vary with temperature approximately by the relation

T~-T
anf—C€ = p
1 _ Z(AT ) TZT,.
3 0 (104)

where ay = 9090 psi
T. = 2020 F
AT, = 420 F
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In Fig. 30 the analytical values of a, are compared with the spread in experimental

values. The large scatter in the parameter a, with relative density made it
difficult to obtain a relationship describing the parameter a,; as a function of
relative density.

The elastic constants are required to complete the formulation but only
Young's modulus can be derived from the compression test data. The Young's
Modulus, E, was assumed to be a linear function of void volume fraction, v,
and an exponential function of temperature, T, given below

T-T,

= T
E = El e 1 vi-v (105)
vy

where vy is the initial void volume fraction, and El, T, and T, were chosen to
provide a good fit to the data, as

E; = 1.5 x 105 psi

T 1900 F

(o}

163 F

T

Figure 31 compares the analytical expression with the resulting mechanical test
data. The comparison is within the experimental error. Since it was not
possible to measure radial deflections during the testing it was assumed that
the bulk modulus for the solid material, K,, was not a function of temperature,
and can be found from Eq. (105) as

T-T,
Ele Tl 6
K, = 3(1-2v) = 7.88 x 10" psi (106)

where v is Poisson's ratio.

For K, to be a constant function of temperature, Poisson's ratio must be given by

(107)
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if it assumed that v is 0.3 at 1600 F for all void volume fractions. Poisson's
ratio is shown as a function of temperature in Fig. 32 using Eq. (107) and

can be seen to approach 0.5 at temperatures near normal HIP operating conditions.
In Appendix A the bulk modulus is derived as a function of Young's modulus,
Poisson's ratio and void volume fraction, Eq. (A.16) by considering the elastic
response of a spherical void within a large sphere as

= ___ji___ v 1+v
K [3(1—2v)]/[1+5 (1—2\2 (108)

where E and v are given by Eqs. (105) and (107). Figure 33 presents the bulk
modulus as a function of void volume fraction and temperature and demonstrates
a large variation with temperature and void volume fraction.

Only the deviatoric creep properties need to be defined, the volumetric creep
has been discussed in this section. The deviatoric creep can be found from the
results of the compression tests, since the volume of the specimens has been
observed to be conserved. A good fit to the data was obtained by taking the
deviatoric creep strain rate to be given by

n
¢d =1 fo] (109)
to \ %

where n=2-2

o
=

(o]

— P
to—aoeTe

1.36 x 10~ sec

a, =
T, = 115000R, and
Yy = 44.3

if S, is assigned the value 15 ksi. 1In Fig. 34 the time constant, t,, is plotted

as a function of density for various temperatures and is compared to the experi-
mentally derived values. Note that the time constant changes an order of magnitude
with a change of 5 percent in the relative density. In Fig. 35 the analytical approxi-
mation for the creep exponent compares favorably with the experimentally determined
values.

At a relative density of 0.85 the volumetric and deviatoric creep strain rates
are the same order of magnitude, but at the initial or final relative density
the rates will differ by about three orders of magnitude.
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MODEL VERIFICATION

Verification Criteria

The constitutive theory developed and supported by the mechanical tests of
partial HIP samples were validated through a series of experiments. The validation
test results were correlated with results of the numerical simulation of the ex-
periment. Although a one-dimensional axisymmetric validation configuration would
provide conditions analogous to those experienced in the actual HIP process.

The validation tests were designed to avoid duplication of the uniform
hydrostatic stress state of the partial HIP tests. The experiments must therefore
result in a nonvanishing shear stress within the sintered material. A nonhydrostatic
stress state can be achieved with the application of the uniform external pressure
if the material has nonhomogenous properties. This may be achieved by imbedding in
the metal powder a different material, for example, steel or fully compacted powder
spheres or cylinders. Such an experimental configuration will produce a nonhydro-
static stress state and will make use of existing hardware and techniques. Micro-
scopic examinations could be used to determine the density as a function of position
or in the case of buried steel spheres metal foil could be placed tangent to a
sphere and the resulting displacements measured and compared to the predicted dis-
placements.

An additional validation experiment could subject a partially dense bar to
uniaxial compression. The bar could then be subjected to second HIP and the density
measured. This test would follow a loading path not previously investigated and the
final density could be used as a measure of the accuracy or limitations of the
theory. This validation test though was deemed impractical because the scatter in
the partial HIP experiments would require a large number of these tests to be per-
formed to produce the same variation in stress state that would result from a much
smaller number of experiments using spherical or cylindrical inclusions. Therefore,
only the verification experiments based on spherical or cylindrical inclusions were
considered.

Spherical Inclusions

As an approximation to a spherical inclusion in a partially compacted powder
consider the case of a rigid sphere buried in an infinite isotropic elastic solid.
The compacting powder will have two elastic parameters, for example, Young's modulus
and Poisson's ratio, which will be functions of position and will depend upon the
stress history at the particular point in the powder. In turn the stress history
will be a function of the loading and the boundary conditions. Appendix G of Ref.
10 presents the solution for the spatial stress distributions about a rigid sphere
imbedded in an isotopic homogenous elastic solid of infinite extent and subjected
to a hydrostatic pressure. Figure 36 presents a plot of the second invariant of
the deviatoric stress tensor as a function of position from the center of a 0.5 in.
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dia sphere. The radial change in the second invariant will result in every radial
point exhibiting a different stress history and producing a different final density. i
Note from Fig. 36 that most of the variation will occur in a distance 0.25 in. from i
the surface of the sphere. Accurate measurements of density as a function of posi-
tion would be required to validate the constitutive model with this experiment. ]
The powder metal particle size is on the order of .002 to .007 in., and 0.25 in.

variation should be more than sufficient to get an accurate representation of the

density.

Initially the spheres may be buried in a very weak powder and it will be
necessary to consider the effects of the sphere weight on the powder. A simple
calculation (i.e., multiplying the fractional increase in weight density by the
diameter of the sphere) shows the effect should produce a stress on the order of
1/30 psi or 1/500 of an atmosphere. This is relatively small compared to the
applied pressures, and can be neglected.

Cylindrical Inclusiomns

Consider the case of a rigid cylindrical rod buried on an infinite homogenous
elastic powder in a plane strain situation. The powder itself will have no result-
ant axial motion near the rod if it is bonded to the rigid rod. Appendix H, of
Ref. 10, is a derivation of the response of a rigid cylindrical rod imbedded in a
homogenous, isotropic elastic metal powder. Figure 37 presents a plot of the
second invariant of the deviatoric stress as a function of position from the center
of a 0.5 in. dia rod. The variation with position is a function of the square of
the distance from the center of the rod. The maximum value obtained for the second
invariant of the deviatoric stress is less for the cylinder than for the sphere.
Most of the effects of the cylindrical inclusion will be negligible after a distance
of about 0.5 in. from the center of the cylindrical rod.

Weight effects are more important for the cylindrical inclusions and are now
on the order of 0.6 psi or about 1/20 atm. The effects of the weight should ]
still be negligible when compared to the applied pressures. :

The cylindrical inclusion problem in itself is not one-dimensional. At the
ends of the rod a two-dimensional stress state exists because of the shear stresses
set up between the powder metal and the initially rough rod. The resulting two-
dimensional, axisymmetric stress distribution can be analyzed using the modified

finite element program.

Note that if the solutions are extended to elastic spheres and rods, the stress
distribution in the powder will depend only on the bulk modulus of the imbedded
material. Therefore, if the imbedded material becomes fluid, it would respond in
essentially the same manner as the solid material.
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Yield Surface Considerations

Consider the yield function Eq. (9) with o equal to zero and R equal to one.
Figure 38 presents the location of the yield point of the various mechanical tests
on the yield surface, and includes the variation of the spherical and cylindrical
inclusions near the yield surface. The region in which the validation experiment
will lie is near the pure hydrostatic stress state where component manufacturing
occurs. In addition, the spherical inclusions present more variation and are

readily available in the form of ball bearings. For these reasons, and because the

displacements could be measured by placing thin metal foil tangent to the sphere,
the spherical inclusion was preferred.

Plastic Analysis for Spherical Inclusions

Before proceeding with the verification experiments a fininte element model
of the experiment was analyzed using the modified MARC code. The model consisted
of 7 axisymmetric elements illustrated in Fig. 39. Constraints were set to insure
only spherically symmetric radial displacement would result. The steel sphere was
modeled as rigid, and therefore the radial displacements were fixed in the powder
at the surface of the steel sphere. The analysis considered only the plastic de-
formations that would result in raising the external pressure to 15 ksi., 1In Fig.
40, the model resulted in predictions that the void volume fraction decreased near
the sphere or the density is highest near the sphere, and by an applied extermnal
pressure of 15 ksi all points in the specimen are more than 90 percent of full
density. From Fig. 41 the predicted radial displacements can be seen to be nearly

a linear function of the radial distance from the center of the sphere at sufficiently

large distances, indicating that foil tangent to the sphere will appear flat at
large distances from the sphere center. The deflections of the foil can be easily
calculated using the radial displacements and are presented as a function of the
distance from the center of the foil, as shown in Fig. 42. At about 8 ksi the
edge of the foil should be nearly flat. These conditions had been run during

the partial HIP tests and produced a relative density of about 0.85, which agrees
with the predicted results presented in Fig. 40.

Verification Results

The specimen design consists of a steel sphere imbedded in a sintered rod.
A layer of nickel foil is placed tangent to the sphere. One, two, or three sphere
and nickel foil configurations are placed within the sintered bar. Figure 43
illustrates a typical configuration. The first verification experiment consisted
of a test to insure the configuration would HIP properly and was successfully com-
pleted.

Two sintered bars were hot isostatic pressed, based on the above success and
the finite element results for a maximum of 10 min at 1800 F and 8 psi. These
bars contained a total of five 0.25 in. diameter spheres. The first specimen
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contained two spheres. When the specimen was divided in two axially it was apparent
that the first sphere had slipped, as it was not centered on the original cut. The
second sphere though was good, although the tapped hole was approximately 0.001 in.
too deep and therefore the sphere contacted the foil directly. The foil displace-
ments were measured where there was no contact and the experimental results were
compared to numerical predictions, as shown in Fig. 44. The agreement was good

but a range of only 0.002 in. of displacement could be measured out of a total of
0.009 in. and therefore there was no basis for verification of the theory. A
second sintered bar containing three spheres was hot isostatic pressed under the
same conditions. Two of these, spheres 3 and 4, appeared to have been pressed pro-
perly the last, sphere 5, had broken at the nickel foil. The experimental results
for sphere 3 are compared to the analytical predictions in Fig. 45. Now the exper-~
imental range is 0.005 in. from the center of the foil. The lack of agreement near
the center may be due to either the relative elasticity of the sphere and powder
including thermal effects, which were not modeled, or due to the weight of the sphere.
The rapid decrease in error with position indicates the error may be due to the
elastic effects. The experimental results for sphere 4 are presented in Fig. 46,
and compared to the analytical predictions. Again the fast variation at the foil
center can be seen., The experimental results then agree with the numerical pre-
dictions for a short distance and rapidly fall off. For this particular sphere there
was no contact between the powder and the foil on one side and no displacement
measurements were taken. The side where measurements were taken may have initially
only contacted out to 0.150 in. from the foil center producing the experimental
results in Fig. 46. It should be pointed that the exact location of foil is
accounted for in the theoretical results in Figs. 44 through 46 and therefore these
curves are not the same.

The results of the verification experiments indicate that the plasticity theory
developed can account for most of the short time response of powder metals. However
additional experiments are required to fully verify the theory.
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HIP PROCESS SENSITIVITY STUDIES

The objective of this task is to develop a finite element methodology for
the efficient modeling of shape changes in the HIP process. In this section the
finite element analysis of the HIP process is described, variables in the analysis
are identified, and the analysis for determining critical parameters and variables
are reviewed.

The formulation of a finite element analysis requires the specification of a
finite element mesh, material properties, external loads histories and boundary
conditions. Additionally, since both material and geometric nonlinearities will

be present, the finite element analysis must be incremental. Consequently an incre-

menting procedure must be established.

The geometry of a HIP configuration consists of a metal container which en-
capsulates a metal powder. For the applications considered in this program the
geometry will be axisymmetric. The container is modeled with axisymmetric thin
shell elements and the powder with axisymmetric ring elements. The MARC code
possesses both ring and shell elements. The axisymmetric ring elements are the

three node triangular element and the four and eight node isoparametric quadrilateral
elements. For the thin shell element model of the container a two node axisymmetric
membrane and bending element is used. The axisymmetric solid elements can be gener-

ated using the MARC two-dimensional mesh generator. The thin shells must be gen-
erated manually.

The container elastic, plastic and creep material properties are modeled using

the finite strain analogs of the classical, incompressible plasticity and creep
theories. Thus the container material is characterized in terms of its uniaxial
plastic and creep response at HIP temperatures. These data have been developed
separately from the this program, in Ref. 2. The powder constitutive model has
been developed in this program.

In the HIP process three load types are present; gravity, the externally
applied increasing pressure field and temperature loads. All three loads should
be modeled. Experimental evidence from the HIP of full scale disks has shown that
gravitational loads produce gross distortion of the HIP containers not adequately
supported around their base. The pressure load applied to the internal surface of
the container is the principal driving force for powder consolidation. Finally,
the effects of possible inhomogeneous temperature distributions must be considered
since container and powder material properties are temperature dependent. Thus
the effects of temperature gradierts should be investigated.

Displacement boundary conditions must be specified to complete the definition
of the HIP configuration to be modeled. The boundary conditions which model the
HIP container support are simply no motion in the vertical direction at the
container base. The evolving boundary conditions between the container and
powder are not presently understood. Initially the powder is free to move
relative to the contalner except on the container lower horizontal surfaces where
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the powder weight may be assumed to inhibit motion. As the temperature in the
container and powder increase, differences in container and powder thermal ex-
pansion will result in either (1) a gap between the container sides and top, and
the powder or (2) compressive stresses being exerted on the powder by the con-
tainer. Irrespective of which of these conditions holds, it has been experi-
mentally observed that at the end of the HIP process the container and powder

are fused together. 1If there is an initial gap between the powder and container,
the interior surfaces of the container walls and top are initially unsupported.
The pressure loads are carried by the container alone causing the container walls
to deform before contacting the powder. This nonuniform deformation in the con-
tainer could contribute to nonuniformities in the final HIP geometry. Thus the
closing of any gaps between the powder and container should be modeled using the
gap element technology in the MARC code. If the container is always in contact
with the powder, an approximation to the container-powder interface would be
complete bonding for the entire HIP cycle. Such an approximation can be imple-
mented by specification of multi-point constraints. In the analyses to follow it
will be assumed that no gaps have formed.

After the input data for the HIP analysis were assembled an incremental
analysis was performed. Thus increment sizes and increment convergence
criteria were established. 1Increment size is controlled by the rate at which
changes in material properties and geometry occur. Typically material properties
change faster than the geometry so that it is unnecessary to account for geometry
changes at every increment. The frequency with which the deforming geometry
should be updated must be determined. Presently the MARC code does not allow for
changing the frequency with which the geometry is updated.

An examination of the sensitivity of HIP finite element analysis will be now
discussed. Parameters which were examined include:

1. 1Inclusion of powder creep deformations

2. The assumption that large strains are important

3. Temperature gradients in the powder

4. The effects of weight

5. Increment size and convergence criteria.

The two element parametric model, Fig. 47, was used to determine an efficient
modeling strategy. The basic case consisted of a pressure loading only and produced

a photographic reduction, (i.e., a proportional change in all the measurements.)
A 50 F linear temperature difference was applied with the top of the model 25 F higher
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than the mean of 1800 F and the bottom 25 F lower. There was no radial variation.

At 15 ksi the bottom had a permanent radial displacement of 0.190 in. inward while

the top moved 0.225 in. inward. This is a significant variation over a diameter ’ ]
of 4 in. Instrumentation can produce errors in temperature of this order and '
therefore the temperature distribution will have to be accurately controlled and

modeled. The unsymmetric part of the stiffness modili were then added to the case

with a temperature variation and the displacement predictions changed by less than

0.5 percent. This was found to be generally true and it appears that this effect

can be neglected. Although the model used should be relatively insensitive to the

effects of weight, the addition of gravitational forces did produce a slight

additional permanent radial displacement at the bottom, and further study with

more sensitive structures should be considered. When the large strain terms in the

numerical analysis were deleted, inaccurate results were produced; the permanent

radial displacements were over predicted by six percent, a large error for an actual

disk even though the modeled structure is relatively simple. Last, the effects of

creep were added and at 2135 F the creep rate was high enough for the displacements

to increase by 1.5 x 10" in. in 3 sec. due to the weight alone, about 0.5 psi, and

therefore during an actual HIP the effects of creep must be accurately included.

The effects of work hardening were not studied since the effect was judged to be

slight and the errors in measurement too large.

To complete this task two additional models were developed: (1) a 65 element
model of the F100 1llth stage compressor disk with 44 container shell elements and
21 quadrilateral elements to represent the powder, Fig. 48, and (2) a model of the
inside corner of the F100 disk with 10 quadrilateral elements and 14 shell elements
to study the distortions at corners, Fig. 48. .

The axisymmetric shell elements chosen to represent the container in the disk
and corner models did not accurately represent the effects of large strains. llowever,
these elements were able to bring the analysis to about half the initial void volume
fraction. Currently there are no operational shell elements in the MARC code cap-
able of modeling the HIP process. The MARC Analysis Research Corporation indicates
more accurate elements should be available in the near future.

The corner model, of Fig. 48, showed that the displacements are considerably
different for the finer mesh than the coarse model of the entire disk. The corner
model had an initial void volume fraction of 0.340 upon termination of the analysis
the void volume fraction varied from 0.009 far from the corner to 0.238 for the
element in the corner. A significant variation that would not be predicted by the
full disk model.

e AR

The full disk analysis began with the powder having an initial density of 0.340
and upon termination of the analysis the central element in Fig. 48, had a void
volume fraction of 0.194 while element 1, an outer element, had a void volume fraction }

1
|
'
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of 0.315. 1In Fig. 49, the displaced shape, with the displacements amplified, readily
shows the effects of weight loading. The displacements predicted were used to derive
general expressions for the final positions (r,z) in terms of the initial positions
(R,Z). From Figs. 50 and 51 the initial and final positions were related by

"

r = 0.9919R + 0.00508 (110)

and

0.9798z + 0.0144 (111)

N
]

Equation (110), and the finite element results, predict a growing of the radius of
the inside hole and a shrinking of the outer radii, which was experimentally
observed. Equations (110) and (111) predict contractions that are larger axially
than radially which was alsoc observed. At the point were analysis was terminated
the difference in contraction ratios (i.e., one minus either of the coefficients
of R and Z) divided by the axial contraction ratio, 0.599, compares well with the
value, 0.648, obtained from Ref. 2. All of these facts indicate that the analysis
is proceeding correctly and that an accurate model of the HIP powder response has
been generated.
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APPENDIX A

HARDENING PARAMETER RELATIONSHIPS

] Take as the two deformation parameters the void volume fraction and the plastic
work, or

ny=v (A.D)

and

t
= Wp =f oij D. .dt (A.Z)
0

In classical volume preserving plasticity theory using either the plastic work or
the effective plastic strain produces exactly the same result. The plastic work,
or equivalently the inelastic energy dissipation has been used previously to
describe nonlinear material repsonse, for example, in Refs. 15 and 16.

3
N

3 ;
.é The quantities k , Eq. (14) must now be determined from N, Parks, in Ref, 17 i
<§ has shown that the void volume fraction rate from Eq. (14), can be described by i
4 considering a mass of powder m, occupying volume, V where {
!
>§ V= Vvoid + Vsolid (A.3) ;
; Then the void volume fraction, v, is given by ‘
v = lvoid (A.4)
% v
¥ The mass can be expressed as

m=ey = V= Psolid Vsolid (A.5)

where Py is the apparent density,

Peolid 1S the density of a powder particle.

Then the relative density (i.e., the bulk density to fully consolidated density
ratio) is simply

p= v (A.6)
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From Eqs. (A.4) and (A.5)

M= Pso1iq V(1Y)
Since
m=0

then in Eq. (A.5)

p = =PDy
Also

=Y
D =%

Taking the derivative of Eq. (A.7) and using Eq. (A.8)

v = (1-v) Dkk + psolid
Psolid
Note that
P = _n solid
.solid Dkk
psolid
and assume that
D =DP +pf

kk kk kk
Then substituting Eqs. (A.11) and (A.12) into Eq. (A.10)

) 1id
= (1- P 4+ (¢ -p°
V=) o+ ( Kk kk 0
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solid P
- D <<|D (A.l4)

‘Dkk kk l | kk ’

by considering a sphere of outer radius b, containing a central void of radius a.

The outward elastic displacement of the outer radius of the sphere when subjected
to an external hydrostatic pressure, P, and no internal pressure is given by

u = _(1-2v)Pb 1 + (1+v) v (A.15)
E 2(1-2v)
a\3
where v =(-€) is the void volume fraction
v = Poisson's Ratio of the solid material
E = Young's Modulus of the solid material

The apparent elastic volume change per unit volume is then given by

2
AV = Z‘TTb u _ -3(1—2\))1) 1 + A 1+V r,t €
ayv = "<V ). ~ D At A.16
\' 4 ﬂb3 E 2 \1-2 kk ( )

\Y

The volume change of the solid particles per unit volume is

AV - -3(3-2v)P w o solid
i Der ac (A.17)

then

] 1 solid De
pe - psolid _ —Dyk At Pk
kk kk e

D~ At
kk

Substituting Eqs. (A. 16) and (A.17) into Eq. (A.18)

. 1+

e _ .solid (1-2v + ———) e

Dkk Dkk - 2 v Dkk (A.19)
(I-Zv + l;_!)v
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The term in the brackets is proportional to the void volume fraction and varies
between zero and one. Therefore, for porous metal subjected to a hydrostatic
pressure

| .
e solid n VP
- —_ A.20
J‘ (Df, = Dp  Dde ¥ ( )
where K ='§?T§737 is the bulk modulus
The plastic part is

f D;’k NV (A.21)

()

For a pressure of 15 ksi, and a bulk modulus of 25 x 106 ksi. The ratio of the
integrals in Eqs. (A.20) and (A.21) is about 0.0006 and therefore the error intro-
duced by neglecting Dﬁk - Dik with respect to Dﬁk should be less than 0.1 percent.

Therefore assuming that

e o _ solid (A.22)
Dk Dik
Eq. (A.13) becomes
nl =y = (l-v)Dkk = Akl (A.23)
Applying the normality condition, Eq. (14)
. . . 2 2
n =v=2x(1-v) — B8 (I,+a) (A.24)
1 3 1
and therefore
k =‘£ (1 )BZ(I +u) (A.25)
1 03 Y 1 .

The second deformation measure, plastic work rate, Wp, is simply given by
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2 ij71j
and from Eq. (14) 62 - - by C% 002)
k, =-§ o: —.g Bza(11+a)
The total observed volume change rate is
D = Dt * Dl

and the response due to the solid material is simply

= o
ek T Ckk

where Es and Vg are the elastic constants of the solid particles.

Substituting Eqs. (A.28) and (A.29) into Eq. (A.13) gives

v = (l—v)[Dkk - E_ |

(1-2v) s

(A.26)

(A.27)

(A.28)

(A.29)

(A.30)

Equation (A.30) is used in MARC code modifications so that the void volume fraction

rate will decrease as the hydrostatic yield increases.
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TABLE 1

TASKS AND SUBTASKS FOR MODELING THE HOT ISOSTATIC
PKESSING PROCESS

Task 1: Constitutive Model Development
1.1 Yield Surface Determination
1,2 Deformation and Time Hardening
1.3 Flow Rule Development
1.4 Creep Effects

Task 2: Code Modifications
2.1 Code Familiarization
2.2 Numerical Strategy Definition
2.3 Code Modifications
2.4 Code Modification Verification

Task 3: Material Properties Determination
3.1 Partial HIP Experiments
3.2 Mechanical Tests
3.2.1 Elevated Temperature Compression Testing
3.2.2 Elevated Temperature Tension Testing
3.2.3 Creep Testing

Task 4: Constitutive Theory Verification
4.1 Verification Design and Analysis
4,2 Verification Experiment
4.3 Correlation

Task 5: HIP Process Sensitivity Study

Annual Report

Final Report
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f(x)
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0.000
0.051
0.103
0.156
0.211
0.268
0.326
0.387
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0.514
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TABLE 4

TEST CONDITIONS FOR
PARTIAL HIP EXPERIMENTS

All specimens preheated for 12 hrs at 2000 F and 1 atm

Final
Exp. Specimen Conditions Relative
) No. No. Temp., F Time, min. Pressure, ksi Density
1 - 2135 20 5 1.000
2 ~ 2135 10 2.5 0.994
3 ~ 2135 10 1 1.000
4 - 1800 10 1 0.746
5 - 1600 10 15 0.706
6 ~ 1600 10 1 0.719
7 1002,03 1800 10 4 0.794,0.798
8 1004,05 2000 10 15 0.990,0.984
9 1006, 07 1800 10 8 0.891,0.822
10 1008,09 1800 10 6 0.809,0.861
11 1010,11 1800 10 10 0.902,0.909
12 1012 ,NG 2000 10 4 0.984,1eaked
13 1017,18 1800 10 15 0.863,0.922
14 1019,20 2000 10 2 0.852,0.934
15 1021,NG 2000 10 4 0.955,1eaked
16 1031,32 2000 10 3 0.819,0.949 3
17 1043,44 1900 10 4 0.894,0.905 I
18 1059,60 1800 60 4 0.887,0.933 s
19 1061,62 1600 10 10 0.758,0.743
20 1067,68 1600 10 8 0.756,0.756
21 1068,70 1900 10 2 0.767,0.832
22 1071,72 1800 30 8 0.912,0.817
23 1073,74 1800 30 4 0. 881,0.883 %
24 1089,90 1600 60 10 0.806,0.812
25 1091,92 1600 60 8 0.800,0.763 !
26 1098,99 1800 120 4 0.900, leaked i
27 1100,01 1600 120 8 0.765,0.811
28 1102,0 1800 240 4 0.881,0,963
29 1106,07 2000 30 2 1.000,0.936
30 1108,09 2000 60 2 1.000,1.000
- NG, NG 1600 10 15 both leaked
- NG, NG 1600 10 15 both leaked
- NG, NG 1600 120 8 both leaked
- Sintered Only - - - 0.707,0.686,
0.705 q
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TABLE 6

STATISTICAL GEOMETRY CHANGES FOR
COMPRESSION TESTS

T

e

Mean std. Dev. m-1
Ratio, Final/Initial m s s
Height 0.9345 0.029 -2.25
Diameter 1.0330 0.010 3.31
Volume 0.9975 0.015 -0.17
73
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TABLE 8
RESULTS OF ROOM AND HIGH TEMPERATURE TENSILE TESTS
Room Temperature Room
Spec imen Relative Yield Stress (ksi) T%TP?rature Yield Stress (ksi)
. timate
No. Density 0.2 Percent Stress (ksi) at 1800 deg. F

1004 0.990 144 168 0.022

1098* 0.900 - 82.4 0.126

1114 0.977 102 156 2.30

1115 0.984 138 164 -

* Failed in grip
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FIG. 2
SAMPLE Hip COMPONENT
a) SAMPLE HIP CONTAINER
b) FINAL PART
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CREEP STRAIN ¢C
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LOCATION OF MERL 76 PARTIAL HIP CONDITIONS
ON CREEP DEFORMATION MAP FOR NICKEL

® MERL 76 PARTIAL HIP EXPERIMENTS
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HEXAGONALLY CLOSE PACKED SPHERES MODEL

(a) GEOMETRIC CONFIGURATION
7.12

SPHERES 1 — 12 ALL CONTACT THE CENTRAL SPHERE
SPHERES 1 — 6 LIE IN THE PLANE OF THE CENTRAL SPHERE

SPHERES 7 — 9 ARE BELOW THE CENTRAL SPHERE
SPHERES 10 — 12 ARE ABOVE THE CENTRAL SPHERE

(b) SPHERICAL PARTICLE DEFORMED INTO A REGULAR DODECAHEDRON

FIG. 9
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COMPARISON OF POWDER COMPACTION FORMULAE WITH FINITE ELEMENT RESULTS
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CREEP ITERATION PROCEDURE
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AXISYMMETRIC LARGE STRAIN MARC TEST CASE

5.2
THEQRY
o UNIVAC MARC
4.8 -
(o]
4.4 -
a0l
ot
+ - 4
| |
3.6 ! ! . F
I | ]
f—2r —i{ | £ LHL
i I >
i 1 L
( ] S
1 |
4 +- L1 1
0
3.2 0.00 0.50 1.00
In(1+€PLASTIC,
w/2
F
| | 1 1
2.8
0.0 0.2 0.4 0.6 0.8 1.0

DEFLECTION, w/t

79-07-82-1




1D=A088 208 UNITED TECHNOLOGIES RESEARCH CENTER EAST HARTFORD CONN F/6¢ 13/8
ANALYTICAL MODELING OF THE HOT ISOSTATIC PRESSING PROCESS. (U}
JUL 80 B N CASSEN'I’Ir K J CHEVERTON FQ%ZO-TO-C-ODW
+ NCLASSIFIED RM—WFI AFOSR=TR=80-0592

2 2
I
END
9-80
onc




|0 &m jz
=LK
oy ['E =

Il oy
' JlL

122 s e

MICROCOPY RESOLUTION TEST CHART

QL




s N AN s 2 TN S 8 e KIS e

. L R o s s o e el -
Aol Bev A e R i RN o i . " eisabole s

g ot S e T T ——, _—_

s R80-944374-13

READ PROPERTIES
VS STATE
VARIABLES
INITIALIZE

STATE
VARIABLES

YES

Lljkl = Ll]kle'

RETURN
Lyki

FIG. 15
FLOW CHART FOR CALCULATING MATERIAL STIFFNESS MATRIX
START
A€ 00, INC
YES
YES
02=0,0+ UPDATE
STATE
Lii® A€ VARIABLES
FIND m SUCH THAT SYMBOLS'
1
e, D—OV\Z)HERE A€, =Ly Aew
1_
%= Oy Lijk€! = L ELASTIC
ML A€
1 Lijkel = pl= L, ELASTIC-PLASTIC
Aep=t1-miAe, 1(0,)=0 1S YIELD SURFACE
FIND 0,11
N=1
]
RUNGE-KUTTA
INTEGRATION WITH
STEP A‘up/"‘ -
STARTING AT 0,
TO GIVE (1 —m) L, P
i |
AUU = L,,Hep AEHD
0’,]3= 0,]‘ + Ao,
|
l'( S 3), : N=pN
/2 A0, AC, +€ WHERL bt
Lkt = MUy + Lige °P CORRECT L,®P T0
BRING ©,% BACK TO
RETURN (6,0
Lyki '
ALONG ==
. 80-~-3-108-1




S O W

At

e AR TR, W 471

A, Dt SRR I P R

R80-944374-13

HYDROSTATIC PRESSURE, py
INITIAL PARTICLE YIELD STRESS,‘O‘Y

i e A g A T St b S Ui Do 52450753 it (i S SN

e G gy (B bt it Al

FIG. 16

HYDROSTATIC PRESSURE NUMERICAL TEST CASE RESULTS

4.0

THEORETICAL
3.0 O NUMERICAL
2.0r—
1.0]

.| l

08 0.9
SPECIMEN DENSITY

FULLY COMPACT DENSITY

1.0

80-3-108-2

o ——



o RGN ik s 1 Wer et e oiat

R80-944374-13

VOID VOLUME FRACTION FOR HYDROSTATIC PRESSURE NUMERICAL TEST CASE RESULTS

VOID VOLUME FRACTION, v

6.2

0.1

A

THEORETICAL

O NUMERICAL PREDICTIONS

| A 1 i

0.02

0.04 | 0.06 0.08 0.10

NORMAL STRAIN COMPONENT, - €xk/3

0.14

oz e SO S P,




e

e BTG LRI DL AL B Ry e

R80-944374-13

AXIAL STRESS, — 041 (ksi)

- . . . . s R P b K otion HalITIGE. 1T e W
A T e s RS o X VS I 7 5 b e Do SR e R KW 1 AR o 5

FiG. 18

'UNIAXIAL COMPRESSION NUMERICAL TEST CASE RESULTS

10
8 [p—0—0—0—0—0—0—-0—-0—0—0—0—0—0—0—0
6 bl
THEORETICAL
4 O NUMERICAL
0 I 1 1 1
0 0.02 0.04 0.06 0.08 0.10

AXIAL STRAIN, — €14

80-~3--108-4

,
¥
—

|

[ ——




i Ao R oA N 58 N i R S S AN i 1 e S5 TN 5 000 R AN, D R SO s -t J ' T -9 L

T -

FIG. 19

R80-944374-13

0
z
v
3
3 9
g
S 8
m
m oL
2t
vl
9l

SHH ‘JNIL
(174 (]} 8L LI 91 Si i gL Cl [ ]} 6 8 L 9

] T\ ] 7 1 P T ]
— | |
-
- ]
- _ _
- | _
- _ |
- _ _
- |
| _ _
- | nss | "UH 8
— HNSS3H
[ “ _ ‘e _ HHZ/LEZ _

| |

| _

_ _

_ |

_

IHNLVYHIIWNIL

_

|

_ _
|'_.II 4} T.II /iy l.'_.mI —-"

aH -—— = jvan3ug

00Z°L

00v'L

0091

371404d INIL—3IHNSSTIYd—IHUNLVHIdNIL
$S3004d diH TVIIdAL

e e

oov'z

4 '34NLvy3adWaL

78-01-212-1




R80-944374-13 FIG. 20

PARTIAL HIP SPECIMENS AT VARIOUS PROCESSING STAGES

SINTERED BAR
~o—— (1200 DEG F, 1 atm, 12 hrs)
IN GLASS

-a——— BAR AFTER HIP

POWDER ENCAPSULATED
IN QUARTZ




FIG. 21

‘NIN—3INIL

79-08--78-3

06 08 oL

0oot AHNSS3Hd

ISd—34NSS3Ud

-1 004

4— IYNLVHIINIL

0002 |-

L (11194
IHNLVHIdNIL

€ NIWIO3dS HO4 310AD 3HNLVYYIAJWIL ANV IHNASSIUC LINN dIH ]

R80-944374-13




i i e A A W 10 20 5l D S i1 A > B I Pl .«.kf-.r:_

R80-944374-13 FIG. 22
+
; HYDROSTATIC YIELD PRESSURE TEST RESULTS
: MERL 76
1 SYMBOL TEMP.F TIME. m
d v 1600 10
o 1800 10
@) 1900 10
§
(o] 2000 10 ‘
v 1600 >10 i
° 1800 >10 ;
® 1900 >10
(] 2000 >10
—_— THEORY '
4.0
9.38 1 R
30
b

HYDROSTATIC YIELD PRESSURE, Py
INITIAL PARTICLE YIELD STRESS, oy
)
=)
|

1.0~
1
!
v ¥
v
0.0 Y l ]
0.7 08 09 1.0
SPECIMEN DENSITY i
FULLY COMPACT DENSITY *

80-1-113-3




R80-944374-13

4

FINAL DENSITY OF PARTIAL HIP SAMPLES

1.00 v
R I ]
| O 10ksi 1600 F
Q v 8Kksi
> ¥ TWO SPECIMENS
= 0.90 |- = CREEP MODEL
&
(@]
g
< 0.80 /’6
3 10 ksi AT
;':/o’ v
1" 8 ksi
070 1
1.00 ‘ 1
A ksi °//g 1800 F
a -
>
=090 k—4 AL o
- Ve o
o /14 ksi
U8}
é 0 80# /D
<0.
W / O 8ksi
O 4ksi
~— CREEP MODEL
0.70 L 1 1]
Q1.00 QO T
N LA 2000 F
e
2 <«
w
00.90
= O 2ksi
T ¢ @ TWO SPECIMENS
- — CREEP MODEL
oo
0.80
10 20 50 100 200 500 1000
TIME-min

FIG. 23

80-4-54-12




R

e

2 W sl

R80-944374-13

MICROGRAMS OF PARTIALLY COMPACTED MERL76 POWDER

b) 10 MIN. AT 1800 DEG. F AND 8 ksi; RELATIVE DENSITY 0.89, 500X

4 , ‘

FIG. 24

79-03-194 -3

W v

e cpimn
[S——




- ” o e . coviiChisahiie i3 A st S e = ik 2
o b e o e i T R AT - IR M (i e g — e
L A e L e S I PR = B e .

R80-944374-13 FIG. 25

TEST SPECIMENS

i

*
%
5

COMPRESSION ~——=

TENSION

'

~4——— CREEP

1 IN.

79-08-76-1




FIG. 26
79-07-82-6

‘NI — NOI133743a

8z0'0 $20°0 0200 9100 ¢i00 800°0 000 0
H ~ Y =T T T T T T T T Y T L T )
4 .me —3INL
A ovi (1748 aol 08 a9 ov 0z 0
T L Y Y T Y Y T T L T Y T Y 0

z 13834 o0t
- ————
“NI1/°03S 01 ‘WIL SNSHAA avOl
1 2 13534
L 4002
Jooe -
! S
) >
. ‘NI/"SE1 001 )
S
'
LHVHD ‘NI/NO1LD3 1430 "Ni 2000 do0v°
NO1LD31430 SNSHAA AVO1

008
\\ "NIW/ NI GZ000 = /
“NI/23S 01 ‘ANIL SNSHIA VO “

3 = 1353y
e | 13534 009
‘g1 (0001) 09°0 "NIW/'NI 5000

00L

(€ "434) 4 0081 '900t "ON NINWIOAS
viva 1s3il NOISSIHJWOD ITdAVS

R80-944374-13

il

o L




e ity £ B NI RS, . 1 GRS i o b L A 5 A G 0l 2 AP NG £ v 1 et e

R80-944374-13

THEORETICAL STRAIN RATE RATIO CORRELATION

o] EXPERIMENTAL STRAIN RATIO
THEORETICAL STRAIN RATE RATIO

-3 Gy R T kAl Bl L % e i w1 A

(o]
NO VOLUME CHANGE O
IN COMPRESSION

SN
wN
= |¥
= |12
< |=
o<
= |
[0 L
2|2
B Ig
< |3
o

SYMMETRIC YIELD
SURFACE

I |
0.80 0.90

SPECIMEN DENSITY
FULLY COMPACT DENSITY '

80-1-113-4




s T e R A e e N i D U ias A A s A S e Mt S PR VTR K A

R80-944374-13

COMPRESSIVE YIELD STRESS RESULTS

MERL 76
SYMBOL TEMP, F TIME. m
v 1600 10 ji
o 1800 10 b
@) 1900 10 ~
o 2000 10 _Ji
v 1600 >10 1
® 1800 >10 -4
® 1900 >10 l
] 2000 >10
—_— THEORY

50

COMPRESSIVE YIELD STRESS,o¢c
INITIAL PARTICLE YIELD STRESS,0y

[

00 ] |
0.70 0.80 0.90 1.00

SPECIMEN DENSITY
FULLY COMPACT DENSITY ' ©

80—-1-113-1




R80-944374-13

TENSILE YIELD STRESS RESULTS

MERL 76
SYMBOL TEMP. F TIME. m
v 1600 10
o 1800 10
(@] 1900 10
a 2000 10
v 1600 >10
o 1800 >10
® 1900 >10
8 2000 >10
— THEORY
>
g, 20
-
o [
s I
%)
@ 16
= 8
7] o
al> 10
w = ©
7[5
2= ] 8
w |-
=1L 00 ! L8 O aff
= 0.70 0.80 0.90 1.00

SPECIMEN DENSITY
FULLY COMPACT DENSITY

80-~1-113-2



|
|

R80-944374-13

EXPONENTIAL HARDENING PARAMETER FOR MERL 76

N\

DATA RANGE

ANALYTICAL APPROXIMATION et come  om
i

A LHARMVAAE ARV RUBRRE VAW ‘
L NS SS S SSIESSSSSS N YSN)
o ) o
T 1) «~ e I
Ce

1SY -T ‘H313WvHvd

ONIN3AHVH TVILNINOJX3 TvO0UdIO3H

2100

2000

1800

1600

TEMP —F

FiIG. 30

80-06-18-12

(SN

i

—
—t

= &=



FIG. 31

™
v
<t
~
%]
<
<
Y
o
[+3]
o

d'ALISN3QA 3AILVI3YH

00’1 S60 060 G8'0 080 G0 0.0 mww
- l_lliﬂlL“h.ﬂh"“g
llll Qe —— - —— —— - — - - \\

— — — —
G001 e —— - -~ /
- %o - - 7 g
40002 _ — - - \ o't
— (o] -
o - -~ Y /
0061 -0~ o -~ o
40061 = _ y,
~ o) ~ /
(o] ~ \
o -~ /
- J / oz
o _-0 v
-~ / /
- / v/
- / /
40081 /o y doe
o / /
o / /
/ /
\ / - 0"
/ v
/7 U.SS\Q v
s0001 7
0sS
NOILYWIXOHAAY TYDILATYNY = = e=m
40002 (]
40061 0o
4008t O
40094 ]

JHNiVHIdWIAL TOBWAS

92 TH3IW ISNIA ATTVILHVd HO4 SNTNAON S.ONNOA

18d g0L— 3 ‘'SNINAON S.ONNOA

80-06-18-7




ek et o - e et S R s

it R < ey it A5, b et

L PRSTL I

o llall N N o i Y

s

Ot ekl e
R80-944374-13 FIG. 32 R/
|
ASSUMED POISSON’S RATIO FOR MERL 76
04}
a !
c 03 ,
T }.
[+ ed
» |
2
: 1;
75}
17} 1
5 o2+ &
g
0.1}
0 ] ] ] 1 1
1600 1700 1800 1900 2000 2100 2200
TEMPERATURE, T—F
i

90-068-18-8




0 ALISNIQ 3AILYIIH
$8°0 80
— 1

Paiil

3 G081

15d 901 —SNINAOW X1N8

9/ THIW ISN3IA ATTVILHVd HOd SNINAONW XN QINNSSY

i
w
I
i
!
1
M

R80-944374-13

o AYOE Dl o U ~ .0 3, e



R80-944374-13

DEVIATORIC CREEP TIME CONSTANT FOR PARTIALLY DENSE MERL 76

SYMBOL TEMPERATURE

faY 1600F

(o] 1800F

0 1900F / / l; 7

[w] 2000F

- e ANALYTICAL APPROXIMATION
g 105
T /
o / / o/ /
£ o
= /A a / / / o
< / / / /
2 / / / / /
o) o 2000F
o / / / / /
w /
= / / / / /
- / o / o) /
/ / / / 0 /
/ / / / /
104 / oo/ / / ?
/ / / / /
/ / / / /
/ / / /
/ / /’ /
/
0
103 | 1 | 1 1 | i
0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00 )
RELATIVE DENSITY., p l ]

80-06-18-10



e P o cdigbidits:

(5 % ades

o A e ca i i

FIG. 35

00t

S6'0

060

d'ALISN3Q 3AILV13YH

G680

080

o o
L —0
o @ 00

m—

I

R80-944374-13

9. TH3IN 3ISNIA ATTVILHVd HOd LNINOIX3I d33HD JIHOLVIAIA

e R TR TR ot WO 0 rore 1 oane e WA oy -

000¢
0061
0081
0091

o

o
Q
v

FHNLYHIAWIL TOBWNAS

NOILYNIXOHdAY TVOILATYNY e e o

U ‘"IN3NOdJX3 d33H0

80-06-18-11




FiG. 36

R80-944374-13

SECOND DEVIATORIC STRESS INVARIANT FOR RIGID SPHERICAL
INCLUSION EMBEDDED IN AN INFINITE ELASTIC SOLID
*

2.0
r
2
Y
3 ~
Q‘\" 1.0p— 0.50 IN,
o
1 0 0.25 0.50 0.75 1.00 1.25 1.50
RADIUS, r — IN.

78-01-147-8




RB0-944374-13

P

FIG. 37
|
SECOND DEVIATORIC STRESS INVARIANT FOR RIGID CYLINDRICAL INCLUSION
EMBEDDED IN AN INFINITE ELASTIC SOLID
3.0
P
|
- r
TS
1.0
\ ——l 0.50 IN, l——
. | l | | |
0 0.26 0.50 0.7 1.00, 1.2 1.50
RADIUS, r — IN.
78-01-147-9




R80-944374-13

"LOCATION OF VALIDATION EXPERIMENTS ON YIELD SURFACE

5" e, V)

W /%0/V3)

() TENSION TEST

¥V TORSION TEST

O COMPRESSION TEST

O HYDROSTATIC PRESSURE DURING HIP

l CYLINDRICAL INCLUSIONS

'/
SPHERICAL INCLUSIONS

78-01-147-6




) - T T Y T ST L T
- . —— - s : eeaed® .
. g AT i ppiiatico i e AN e ST

R80-944374-13 FIG. 39

VERIFICATION EXPERIMENT FINITE ELEMENT MODEL

APPLIED EXTERNAL PRESSURE

SYMMETRY BOUNDARY

SYMMETRY BOUNDARY\

i

i

i

{
| FIXED BOUNDARY _f
| .




s

R80-944374-13

VOID VOLUME FRACTION, v

FIG. 40
PREDICTED VOID VOLUME FRACTION FOR VERIFICATION EXPER_IMENT
0.4
i
G ksi :
0.3
f 3 kst
0.2
B ksi
F 9 ks
01 / e 12 KSi
; — e |
oL.. 1 1 1 !
0 1 2 3 4 l
RADIAL DISTANCE
RADIUS OF EMBEDDED SPHERE l
80-08-18-6

T L P TS | oy WY

WP AR e e



[ Sy
il

R80-944374-13 FIG. 41

i Phadln LA Bt e A i b Bl ot
[

PREDICTED RADIAL DISPLACEMENTS FOR VERIFICATION EXPERIMENT

ik Atk e i 2

04

15 kst

12 ksi

03l i
9 ksi

6 ksi

3 ksi

RADIAL DISPLACEMENT
RADIUS OF EMBEDDED SPHERE
o
o
]

e e

01

0 | ] 1
0 1.0 2.0 3.0 4.0

RADIAL DISTANCE
RADIUS OF EMBEDDED SPHERE

o bemmd

80-06-18-8




it 2t a3

By

FIG. 42

™
v
<
N~
)
<
<
@
o
@
o

4

JHIHLS A3AA38gN3I 40 SNIavd
H3ILIN3O 104 WOH4 JONVLSIA

Qe oe S 0¢ Sl ol S0 0
T | | T 1 I | 0
\ <00
IS4 ¢
00
1S% 9 900
1% 6
800
184 21
1SY G1

ANIWIHIdX3 NOILVII4IHIA HO4 ANIWIOVIdSIA 104 TINIIN @3101Q3Hd

oLa

3d3HdS d30038W3 40 SNawy

LANIW3OVIdSIa 1104 13MDIN

90-08-18-4




R80-944374-13 FIG. 43

TYPICAL CONFIGURATION OF VERIFICATION EXPERIMENT

h M
A

NICKEL FOIL !

1 ( 2
STEEL BALL

SINTERED BAR

0.625 in.

0.625 in.

\ NICKEL FOIL

STEEL BALL

, N— ~——

90-08-18~17




R80-944374-13

DEFLECTION, Ay —mils

RESULYS FOR VERIFICATION EXPERIMENT NO. 2

FIG. 44

10

8k

NUMERICAL RESULTS
O EXP. RESULTS
4y
6l | o—— L
4 1 1 1
4] 0.1 0.2 0.3 0.4 0.5
(OCATION, x —in.
90-06-18-3

l
l
I
I



R80-944374-13

DEFLECTION, Ay —mils

FIG. 45

RESULTS FOR VERIFICATION EXPERIMENT NO. 3

10
o
o —
8-
.
0O g NUMERICAL RESULTS
0O  EXP. RESULTS
(]
6 -
m]
y .
| L 1 1
0 0.1 0.2 0.3 0.4 05

LOCATION, x —in.

80-068-18-2




s M a ;‘.,Vs&hmwwd_,,... .

R80-944374-13 FIG. 46

DEFLECTION, Ay — mils

10

RESULTS FOR VERIFICATION EXPERIMENT NO. 4

NUMERICAL RESULTS

v EXP. RESULTS

Ay

1 1

LOCATION, x —in.

1
0.1 0.2 0.3 0.4 05

80-08-18-1

AvA

]

[ —

—




RB0-944374-13

D MRSl L W s s ot AN At %

PARAMETRIC STUDY FINITE ELEMENT MODEL

80-068-18-18




<1 S N i i . 12 KN K N S ‘w"«*m &

R80-944374-13

DISK AND CORNER FINITE ELEMENT MODELS

AXISYMMETRIC DISK MODEL

} 452 in. |

ELEMENT 1

N\

[ QY

r-r
- ELEMENT 7 /
L

8.96 1n.

FIG. 48

AXISYMMETRIC CORNER MODEL

80-08-18-13

- ——

—

-— | S e




' R80-944374-13

DEFORMED SHAPE OF F100 11th STAGE COMPRESSOR DISK

= = = = ORIGINAL SHAPE
MAGNIFIED DEFORMED SHAPE

|

80-6-183-1




ke sy

O da bbbt e DS S ko

3 ‘Ul — H ‘NOILISOd Tviavy
m 6 9 g v € r4 0
| T T T M v
o]
B
Nl
b 8 7]
~
S~
- ~N c
/ [o]
/
lllll
~
™~
~ ~ —Hz
(o] /
HOL800 0-805000= N /
o ~
~
~ 4,
-9
o)
0
N
m 8
m SIOVIHUNS TVIXY NO SLNIWIOVIdSIA TvIAvH

. T BT D ey WY

‘Ul g0 X N 'LINIWIOVIASIA IVOIaVH

80-6-183-2




R80-944374-13

£
™
o
X
F
-
Z
w
=
L
Q
<
-
a9
<4
(=)
-
<
>
<
w
2
—
<
S
w
4

AXIAL DISPLACEMENTS ON RADIAL SURFACES

60 fo
/
/
° /
o/
40 — o /
30 - ° /w_‘ )
/
/
20 |- /
J o
/
/ o
/ o o
Lt

INITIAL AXIAL POSITION, Z in.

80-6-153-3




R80-944374-13

DISTRIBUTION LIST

Director of Aerospace Sciences

Air Force Office of Scientific Research

United States Air Force

Bolling Air Force Base

Washington, D.C. 20332

Attention: Lt. Co. J. D. Morgan III

AFOSR/NA (16 copies of Enclosure)

Dr. R. Dreschfield

NASA Lewis Research Center

21000 Brookpark Road

Cleveland, Ohio 44135 (1 copy Enclosure)

Dr. H. Gegel
Mail Stop AFWAL/LLM
WPAFB, Ohio 45433 (1 copy Enclosure)

Dr. L. Berke

NASA Lewis Research Center

21000 Brookpark Road

Cleveland, Ohio 44135 (1 copy Enclosure)




